Self Studies

Vector Algebra Test - 47

Result Self Studies

Vector Algebra Test - 47
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The angle between the two vectors $$\hat { i } +\hat { j } +\hat { k }$$ and $$ 2\hat { i } -2\hat { j } +2\hat { k } $$ is equal to
    Solution
    $$\textbf{Step 1: Angle between two vectors }(\theta)$$
    Dot product between the two vectors is defined as:  
    $$\vec{a}.\vec{b}= |\vec{a}||\vec{b}|\cos\theta$$ 
    $$\Rightarrow \cos \theta = \dfrac {\vec {a} \cdot \vec {b}}{|\vec {a}| |\vec {b}|} = \dfrac {(\hat {i} + \hat {j} + \hat {k})\cdot (2\hat {i} - 2\hat {j} + 2\hat {k})}{\sqrt {3}\times \sqrt {4 + 4 + 4}}$$$$= \dfrac {2 - 2 + 2}{\sqrt {3} \times \sqrt {12}} = \dfrac {1}{3}$$
     $$\Rightarrow\theta = \cos^{-1} \left (\dfrac {1}{3}\right )$$
    Hence angle between vectors is $$\cos^{-1}\left (\dfrac {1}{3}\right )$$
    Option (E) correct.
  • Question 2
    1 / -0
    Let $$u, v$$ and $$w$$ be vectors such that $$u + v + w = 0$$. If $$|u| = 3, |v| = 4$$ and $$|w| = 5$$, then $$u . v + v . w + w.u$$ is equal to
    Solution
    Given, $$|u| = 3, |v| = 4 $$ and $$|w| = 5$$

    Also, $$ u + v + w = 0$$

    On squaring both sides, we get

    $$|u|^2 + |v|^2 + |w|^2 + 2(u. v + v.w + w.u) = 0$$

    $$\Rightarrow 3^2 + 4^2 + 5^2 + 2 (u.v + v.w + w.u) = 0$$

    $$\Rightarrow 9 + 16 + 25 + 2(u.v + v.w + w.u) = 0$$

    $$\Rightarrow u.v + v.w + w.u = - \dfrac{50}{2} = - 25$$
  • Question 3
    1 / -0
    If $$a=\hat { i } +\hat { j } +\hat { k } $$, $$b=4\hat { i } +3\hat { j } +4\hat { k }$$ and $$c=\hat { i } +\alpha \hat { j } +\beta \hat { k } $$ are coplanar and $$\left| c \right| =\sqrt { 3 } $$, then
    Solution
    Given that, $$a=\hat { i } +\hat { j } +\hat { k } $$,
    $$b=4\hat { i } +3\hat { j } +4\hat { k } $$
    and $$c=\hat { i } +\alpha \hat { j } +\beta \hat { k }$$
    Since, $$a, b$$ and $$c$$ are coplanar.
    Then, $$\begin{vmatrix} 1 & 1 & 1 \\ 4 & 3 & 4 \\ 1 & \alpha  & \beta  \end{vmatrix}=0$$
    $$\Rightarrow 1\left( 3\beta -4\alpha  \right) -1\left( 4\beta -4 \right) +1\left( 4\alpha -3 \right) =0$$
    $$\Rightarrow 3\beta -4\alpha -4\beta +4+4\alpha -3=0$$
    $$\Rightarrow \beta =1$$
    Also, $$\left| c \right| =\sqrt { 3 } $$
    $$\Rightarrow \sqrt { 1+{ \alpha  }^{ 2 }+{ \beta  }^{ 2 } } =\sqrt { 3 }$$
    $$\Rightarrow { \alpha  }^{ 2 }=1\Rightarrow \alpha =\pm 1$$
  • Question 4
    1 / -0
    If $$\vec{a} = \hat{i} + 2 \hat{j} + 2 \hat{k} , |\vec{b}| = 5 $$ and the angle between $$\vec{a}$$ and $$\vec{b}$$ is $$ \dfrac{\pi}{6} $$, then the area of the triangle formed by these two vectors as two sides is 
    Solution
    Area of the triangle
    $$=\dfrac{1}{2} |a \times b|$$
    $$= \dfrac{1}{2} ||a| |b| \sin \theta \widehat n|$$
    $$= \dfrac{1}{2} \left [ 3 \times 5 \times \sin \dfrac{\pi}{6} \right ]$$
                                                   $$\left( \therefore |a| = \sqrt{1 + 2^2 + 2^2 } = 3 \right )$$
    $$= \dfrac{1}{2} \left [ 15 \times \dfrac{1}{2} \right ] = \dfrac{15}{4}$$
  • Question 5
    1 / -0
    If $$\lambda (3 \widehat i + 2 \widehat j - 6 \widehat k)$$ is a unit vector, then the values of $$\lambda $$ are
    Solution
    Now, $$|(3 \widehat i + 2\widehat j - 6\widehat k)| = \sqrt{3^2 + 2^2 + (-6)^2}$$
    $$= \sqrt{9 + 4 + 36}$$
    $$= \sqrt{49} = 7$$
    Since, $$\lambda (3 \widehat i + 2\widehat j - 6\widehat k)$$ is a unit vector.
    $$\therefore \lambda \pm \dfrac{1}{|3 \widehat i + 2\widehat j - 6\widehat k|}$$
    $$= \pm \dfrac{1}{7}$$
  • Question 6
    1 / -0
    Let $$a,b,c$$ be three non-zero vectors such that $$a+b+c=0$$, then $$\lambda b\times a+b\times c+c\times a=0$$, where $$\lambda$$ is
    Solution
    Clearly $$a,b,c$$ represents the sides of a triangle.
    Therefore, $$ a\times b=b\times c=c\times a\quad $$
    $$ \Rightarrow a\times b+b\times c+c\times a=3a\times b$$
    $$\Rightarrow 2b\times a+b\times c+c\times a=0$$
    $$\Rightarrow  \lambda =2$$

  • Question 7
    1 / -0
    Let $$ABCD$$ be a parallelogram. If $$AB=\hat { i } +3\hat { j } +7\hat { k } , AD=2\hat { i } +3\hat { j } -5\hat { k } $$ and $$p$$ is a unit vector parallel to $$AC$$, then $$p$$ is equal to
    Solution
    Given, $$AB=\hat i+3\hat j+7\hat k, AD=2\hat i+3\hat j-5\hat k$$
    $$AC=AB+AD$$
    $$=\left( \hat { i } +3\hat { j } +7\hat { k }  \right) +\left( 2\hat { i } +3\hat { j } -5\hat { k }  \right) $$
    $$=3\hat { i } +6\hat { j } +2\hat { k } $$
    Now, $$p$$ is a unit vector parallel to $$AC$$.
    Then, $$p=\dfrac { AC }{ \left| AC \right|  } $$
    $$=\dfrac { 3\hat { i } +6\hat { j } +2\hat { k }  }{ \sqrt { 9+36+4 }  }$$
    $$\Rightarrow p=\dfrac { 1 }{ 7 } \left( 3\hat { i } +6\hat { j } +2\hat { k }  \right) $$

  • Question 8
    1 / -0
    If $$a=2i+2j+3k, b=-1+2j+k$$ and $$c = 3i + j$$, then $$a+tb$$ this perpendicular to $$c$$; if $$t$$ is equal to 
    Solution
    Given, $$a=2i+2j+3k,b=-1+2j+k $$ and $$c=3i+j$$
    We need to find value of $$a+ tb\perp c$$
    $$\Rightarrow (a+tb)\cdot c=0$$
    $$\Rightarrow a\cdot c+ tb \cdot c=0$$
    $$\Rightarrow t=-\dfrac {a\cdot c}{b\cdot c}$$
    $$\Rightarrow t=-\dfrac {(2i+2j+3k)\cdot (3i+j)}{(-i+2j+k)\cdot (3i+j)}$$
    $$\Rightarrow t=-\dfrac {6+2+0}{-3+2+0}=8$$ 
  • Question 9
    1 / -0
    Let $$P\left( 1,2,3 \right) $$ and $$Q\left( -1,-2,-3 \right) $$ be the two points and let $$O$$ be the origin. Then, $$\left| PQ+OP \right| $$ is equal to
    Solution
    Given that, $$P=\left( 1,2,3 \right) , Q=\left( -1,-2,-3 \right) $$ and $$O=\left( 0,0,0 \right) $$. 
    Then, $$PQ=\left( -1-1 \right) \hat { i } +\left( -2-2 \right) \hat { j } +\left( -3-3 \right) \hat { k } $$
    $$=-2\hat { i } -4\hat { j } -6\hat { k } $$
    and $$OP=\left( 1-0 \right) \hat { i } +\left( 2-0 \right) \hat { j } +\left( 3-0 \right) \hat { k } $$
    $$=\hat { i } +2\hat { j } +3\hat { k } $$
    Now, $$PQ+OP=\left( -2\hat { i } -4\hat { j } -6\hat { k }  \right) +\left( \hat { i } +2\hat { j } +3\hat { k }  \right) $$
    $$=-\hat { i } -2\hat { j } -3\hat { k } $$
    $$\Rightarrow \left| PQ+OP \right| =\sqrt { { \left( -1 \right)  }^{ 2 }+{ \left( -2 \right)  }^{ 2 }+{ \left( -3 \right)  }^{ 2 } } =\sqrt { 14 } $$

    Alternate Method
    $$PQ=OQ-OP$$
    $$\Rightarrow PQ+OP=OQ$$
    Now, $$OQ=-\hat { i } -2\hat { j } -3\hat { k } $$
    $$\left| OQ \right| =\sqrt { { \left( -1 \right)  }^{ 2 }+{ \left( -2 \right)  }^{ 2 }+{ \left( -3 \right)  }^{ 2 } } $$ $$=\sqrt { 14 } $$
    Therefore, $$ \left| PQ+OP \right| =\left| OQ \right| $$ $$=\sqrt { 14 } $$
  • Question 10
    1 / -0
    If $$3p + 2q =i + j + k$$ and $$3p - 2q = i - j - k$$, then the angle between $$p$$ and $$q$$ is
    Solution
    Given, $$3p + 2q = i + j + k $$    ..... (i)
    and $$3p - 2q = i - j - k$$     .... (ii)
    On adding Eqs. (i) and (ii), we get
    $$6p = 2i$$
    Therefore, $$ p = \dfrac {i}{3}$$
    On subtracting Eq. (ii) from Eq. (i), we get
    $$4q - 2(j + k) \Rightarrow q = \dfrac {1}{2} (j + k)$$
    Let $$\theta$$ be the angle between $$p$$ and $$q$$, then
    $$p\cdot q = |p||q|\cos \theta$$
    $$\Rightarrow \cos \theta = \dfrac {p\cdot q}{|p||q|}$$
    $$\Rightarrow \cos \theta = \dfrac {1}{6} \dfrac {i\cdot (j + k)}{|p||q|} = 0 = \cos 90^{\circ}$$
    Thus $$ \theta = 90^{\circ} = \dfrac {\pi}{2}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now