Self Studies

Vector Algebra Test - 48

Result Self Studies

Vector Algebra Test - 48
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$\overline{a},\overline{b},\overline{c},$$ are unit vectors such that $$\overline{a}+\overline{b}+\overline{c}+\overline{c.a}=$$
    Solution
    $$-\dfrac{3}{2}$$ 
  • Question 2
    1 / -0
    If the scalar projection of the vectors $$xi-j+k$$ on the vector $$2i-j+5k$$ is $$\cfrac { 1 }{ \sqrt { 30 }  } $$, then the value of $$x$$ is equal to 
    Solution
    Projection of $$xi-j+k$$ on $$2i-j+5k$$
    $$=\cfrac { \left( xi-j+k \right) \left( 2i-j+5k \right)  }{ \sqrt { 4+1+25 }  } =\cfrac { 2x+1+5 }{ \sqrt { 30 }  } $$
    But $$\cfrac { 2x+6 }{ \sqrt { 30 }  } =\cfrac { 1 }{ \sqrt { 30 }  }$$
    $$ \Rightarrow x=-\cfrac { 5 }{ 2 } $$
  • Question 3
    1 / -0
    $$a$$ and $$c$$ are unit vectors and $$|b| = 4$$. If angle between $$b$$ and $$c$$ is $$\cos^{-1}\left (\dfrac {1}{4}\right )$$ and $$a\times b = 2a\times c$$, then $$b= \lambda a + 2c$$, where $$\lambda$$ is equal to
    Solution
    Given, $$a\times b = 2a\times c$$
    $$\Rightarrow a\times b - 2a\times c = 0$$
    $$\Rightarrow a\times (b - 2c) = 0$$
    $$\Rightarrow a$$ and $$(b - c)$$ are collinear.
    $$\Rightarrow b - 2c = \lambda a$$
    $$\Rightarrow |b - 2c|^{2} = \lambda^{2}|a|^{2}$$
    $$\Rightarrow |b|^{2} + 4|c|^{2} - 4b\cdot c = \lambda^{2}|a|^{2}$$
    $$\Rightarrow 16 + 4 - 4 (4) (1)\dfrac {1}{4} = \lambda^{2}(1)$$
    Therefore, $$\lambda = \pm 4$$.
  • Question 4
    1 / -0
    Let $$\vec{OB} =\hat { i } +2\hat { j } +2\hat { k }$$ and $$\vec{OA} =4\hat { i } +2\hat { j } +2\hat { k } $$. The distance of the point $$B$$ from the straight line passing through $$A$$ and parallel to the vector $$2\hat { i } +3\hat { j } +6\hat { k } $$ is
    Solution
    Let the equation of line be $$r=a+\lambda b$$. 
    Since, line passes through $$A$$, so $$a=4\hat { i } +2\hat { j } +2\hat { k } $$ and line is parallel to the vector $$2\hat { i } +3\hat { j } +6\hat { k } $$, so $$b=2\hat { i } +3\hat { j } +6\hat { k } $$
    Hence, equation of the line is
    $$r=4\hat { i } +2\hat { j } +2\hat { k } +\lambda \left( 2\hat { i } +3\hat { j } +6\hat { k }  \right) $$
    Distance of point $$B$$ from the line $$=\left| \dfrac { \left| \left( { a }_{ 2 }-{ a }_{ 1 } \right)  \right| \times b }{ \left| b \right|  }  \right| $$
    $${ a }_{ 2 }-{ a }_{ 1 }=3\hat { i } +0\hat { j } +0\hat { k } $$
    $$\left( { a }_{ 2 }-{ a }_{ 1 } \right) \times b=\begin{vmatrix} \hat { i }  & \hat { j }  & \hat { k }  \\ 3 & 0 & 0 \\ 2 & 3 & 6 \end{vmatrix}=-18\hat { j } +9\hat { k } $$
    $$\left| \left( { a }_{ 2 }-{ a }_{ 1 } \right) \times b \right| =\sqrt { { \left( -18 \right)  }^{ 2 }+{ \left( 9 \right)  }^{ 2 } } $$
                               $$=\sqrt { 405 } =9\sqrt { 5 } $$
    $$\left| b \right| =\sqrt { 4+9+36 } =7$$
    Therefore, required distance is $$\dfrac { 9\sqrt { 5 }  }{ 7 } $$.
  • Question 5
    1 / -0
    Given that A$$+$$B$$+$$C$$=0$$. Out of three vectors, two are equal in magnitude and the magnitude of third vector is $$\sqrt{2}$$ times that of either of the two having equal magnitude. Then, the angles between the vectors are given by.
    Solution
    From polygon law, three vectors having summation zero should form, a closed polygon(triangle). Since, the two vectors are having same magnitude and the third vector is $$\sqrt{2}$$ times that of either of two having equal magnitude, i.e., the triangle should be right angled triangle.
    Angle between A and B, $$\alpha =90^o$$
    Angle between B and C, $$\beta =135^o$$
    Angle between A and C, $$\gamma =135^o$$.

  • Question 6
    1 / -0
    Let $$a,b,c$$ be three non-zero vectors such that no two of these are collinear. If the vectors $$a+2b$$ is collinear with $$c$$ and $$b+3c$$ is collinear with $$a$$ ($$\lambda$$ being some non-zero scalar), then $$a+2b+6c$$ equals to
    Solution
    Since, $$a+2b$$ is collinear with $$c$$
    $$a+2b=mc...(i)$$
    Since $$b+3c$$ is collinear with $$a$$
    $$b+3c=na.....(ii)\quad $$
    Myltiplying Eq(ii) by $$2$$ and subtracting Eq.(ii) from Eq.(i), we get
    $$a-bc=mc-2na$$
    On comparing, we get
    $$m=-6;n=-\cfrac { 1 }{ 2 } $$
    From Eq.(i), we have
    $$a+2b=-6c\quad $$
    $$\Rightarrow a+b+6c=0\quad $$
  • Question 7
    1 / -0
    Let $$\vec { a } =\hat { i } +\hat { j } -\hat { k } ,\vec { b } =\hat { i } -\hat { j } +\hat { k } $$ and $$\vec { c } $$ be a unit vector perpendicular to $$\vec { a } $$ and coplanar with $$\vec { a } $$ and $$\vec { b } $$, then $$\vec { c } $$ is
    Solution
    Required unit vector $$=\pm \cfrac { \vec { a } \times \left( \vec { a } \times \vec { b }  \right)  }{ \left| \vec { a } \times \left( \vec { a } \times \vec { b }  \right)  \right|  } $$
    Now $$\vec { a } \times \left( \vec { a } \times \vec { b }  \right) =\left( \vec { a } .\vec { b }  \right)\vec{a} -\left( \vec { a } .\vec { a }  \right) \vec { b } $$
    $$\vec { a } \times \vec { b } =\begin{vmatrix} \hat { i }  & \hat { j }  & \hat { k }  \\ 1 & 1 & -1 \\ 1 & -1 & 1 \end{vmatrix}=-2\hat { j } -2\hat { k } $$
    $$\therefore \vec { a } \times \left( \vec { a } \times \vec { b }  \right) =\begin{vmatrix} \hat { i }  & \hat { j }  & \hat { k }  \\ 1 & 1 & -1 \\ 0 & -2 & -2 \end{vmatrix}=-4\hat { i } +2\hat { j } -2\hat { k } $$
    $$\left| \vec { a } \times \left( \vec { a } \times \vec { b }  \right)  \right| =\sqrt { 24 } =2\sqrt { 6 } $$
    $$\therefore$$ Unit vector $$=\pm \cfrac { \vec { a } \times \left( \vec { a } \times \vec { b }  \right)  }{ \left| \vec { a } \times \left( \vec { a } \times \vec { b }  \right)  \right|  } =\pm \cfrac { \left( 2\hat { i } -\hat { j } +\hat { k }  \right)  }{ \sqrt { 6 }  } $$
    (taking positive for option)
  • Question 8
    1 / -0
    Let $$a, b, c$$ be three non-coplanar vectors and $$r$$ be any arbitrary vector, then the expression $$(\vec {a}\times \vec {b})\times (\vec {r}\times \vec {c}) + (\vec {b} \times \vec {c})\times (\vec {r}\times \vec {a}) + (\vec {c}\times \vec {a}) \times (\vec {r}\times \vec {b})$$ is always equals to
    Solution

  • Question 9
    1 / -0
    Find $$k$$ if magnitude of vectors joining $$(0,k,0)$$ and $$(1,1,1)$$ is $$\sqrt {11}$$
    Solution
    Using definition of magnitude, we have 
    $$11 = 1 + $$ $$(k-1)^{2}$$ $$+1$$ 
    So $$(k-1)^{2}$$ $$= 9 $$
    $$\Rightarrow k^2-2k+1-9=0$$
    $$\Rightarrow k = +4$$ or $$-2 $$
    So, the answer is $$  -2 $$.
  • Question 10
    1 / -0
    If three vectors $$ a, b, c $$ satisfy $$ a+b+c=0$$ and $$ |a| = 3, |b| = 5, |c| = 7 , $$ then the angle between $$a$$ and $$b$$ is :
    Solution
    Given, $$|a|=3,\quad |b|=5,\quad |c|=7$$   and 
    $$\overrightarrow { a } +\overrightarrow { b } +\overrightarrow { c } =0$$
    => $$\overrightarrow { a } +\overrightarrow { b } =(-\overrightarrow { c } )$$
    On squaring both side, we get
    $${ (\overrightarrow { a } +\overrightarrow { b } ) }^{ 2 }={ (-\overrightarrow { c } ) }^{ 2 }$$
    => $${ |\overrightarrow { a } | }^{ 2 }+{ |\overrightarrow { b } | }^{ 2 }+2(\overrightarrow { a } .\overrightarrow { b } )={ |\overrightarrow { c } | }^{ 2 }$$
    Let the angle between $$\overrightarrow { a } $$ and $$\overrightarrow { b } $$  is  $$\theta $$, then
    $${ |\overrightarrow { a } | }^{ 2 }+{ |\overrightarrow { b } | }^{ 2 }+2|\overrightarrow { a } ||\overrightarrow { b } |\cos { \theta  } ={ |\overrightarrow { c } | }^{ 2 }$$
    => $${ 3 }^{ 2 }+{ 5 }^{ 2 }+2\times 3\times 5\times \cos { \theta  } ={ 7 }^{ 2 }$$
    => $$\cos { \theta  } =\frac { 1 }{ 2 } $$
    So, the angle between $$\overrightarrow { a } $$ and $$\overrightarrow { b } $$  is  $$\theta $$ $$= 60^o$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now