Self Studies

Vector Algebra Test - 49

Result Self Studies

Vector Algebra Test - 49
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Let $$ABC$$ be an acute scalene triangle, and $$O$$ and $$H$$ be its circumcentre and orthocentre respectively. Further let $$N$$ be the midpoint of $$OH$$. The value of the vector sum $$\vec {NA} + \vec {NB} + \vec {NC}$$ is
    Solution
    $$\overrightarrow{HE}=\overrightarrow{NE}-\overrightarrow{NH}$$
    $$\Rightarrow \dfrac{1}2\overrightarrow{AH}=\dfrac{1}{2}[\overrightarrow{NB}+\overrightarrow{NC}]-\dfrac{1}{2}\overrightarrow{OH}$$    ....$$ (\because HE\perp BC,AH\perp BC$$
    $$\Rightarrow \overrightarrow{HE}\parallel \overrightarrow{AH}$$
    $$HE=R\cos(A),AH=2R\cos(A)\\\Rightarrow \overrightarrow{HE}=\dfrac{1}{2}\overrightarrow{AH}$$
    $$E$$ midpoint of $$BE$$
    $$\Rightarrow  \overrightarrow{NE}=\dfrac{1}{2}[\overrightarrow{NB}+\overrightarrow{NC}]$$
    $$ N$$ midpoint of $$OH$$
    $$\Rightarrow \overrightarrow{NH}=\dfrac{1}{2}\overrightarrow{OH} )\\\Rightarrow \overrightarrow{NH}-\overrightarrow{NA}=\overrightarrow{NB}+\overrightarrow{NC}+\overrightarrow{H)}$$
    $$\Rightarrow \overrightarrow{NA}+\overrightarrow{NB}+\overrightarrow{NC}=\overrightarrow{HO}+\dfrac{1}{2}\overrightarrow{OH}=\dfrac{1}{2}\overrightarrow{HO}$$

  • Question 2
    1 / -0
    Direction angle of a vector is $$30^{\circ}$$, then find the vector.
    Solution
    $$\begin{matrix} Let\, \, the\, \, po{ int }\, are\, \left( { a,\, b } \right) \, \, then \\ \overrightarrow { V } =a\cos  \theta \widehat { i } +b\sin  \theta \widehat { j }  \\ =a\cos { 30^{ \circ  } } +b\sin { 30^{ \circ  } }  \\ =a\times \frac { { \sqrt { 3 }  } }{ 2 } \widehat { i } +b\times \frac { 1 }{ 2 } \widehat { j }  \\ \therefore \overrightarrow { V } =\sqrt { 3 } a\widehat { i } +b\widehat { j }  \\  \end{matrix}$$

  • Question 3
    1 / -0
    In the diagram, vector C is equivalent to.

    Solution
    C⃗ +B⃗ =D⃗ +A⃗ C→+B→=D→+A→ Diagonal of the figure.
    or C⃗ =D⃗ +A⃗ B⃗ C→=D→+A→−B→.
  • Question 4
    1 / -0
    The position vectors of A, B are a, 6 respectively. The position vector of C is $$\dfrac {5\bar{a}}{3} -\bar{b}$$. Then 3 
    Solution
    We have given that
    The position vector of $$A$$ and $$B$$ are $$a$$ and $$6$$ respectively.
    $$\therefore $$ 
    Now ,
    The position vector of $$C$$ is $$\dfrac{{5\overline a }}{3} - \overline b$$,
    Then, the position vector at $$C$$ os inside the  $$\Delta OAB$$ 
    Hence, the option $$(A)$$ is correct.
  • Question 5
    1 / -0
    If $$\bar{a},\bar{b}, \bar{c}$$ are unit vectors such that $$\bar{a}+ \bar{b}+ \bar{c}=\bar{0}$$, then $$\bar{a}.\bar{b}+ \bar{b}.\bar{c}+ \bar{c}.\bar{a}=$$
    Solution
    Given,
          $$\bar{a}+\bar{b}+\bar{c}=0$$
    Squaring both sides,
      $$\left(\bar{a}\right)^2+\left(\bar{b}\right)^2+\left(\bar{c}\right)^2+2.\bar{a}.\bar{b}+2.\bar{b}.\bar{c}+2.\bar{c}.\bar{a}=0$$
    $$1+1+1+2\left(\bar{a}.\bar{b}+\bar{b}.\bar{c}+\bar{c}.\bar{a}\right)=0$$
    $$\Rightarrow\left(\bar{a}.\bar{b}+\bar{b}.\bar{c}+\bar{c}.\bar{a}\right)=-\dfrac{3}{2}$$ is the correct answer.
  • Question 6
    1 / -0
    If $$\vec { PR } =2\vec { i } +\vec { j } +\vec { k } ,\vec { QS } =-\vec { i } +3\vec { j } +2\vec { k } $$ then the area of the quadrilateral $$PQRS$$ is:
    Solution
    Given $$\vec{PR}=2\vec{i}+\vec{j}+\vec{k}, \vec{QS}=-\vec{i}+3\vec{j}+2\vec{k}$$

    We have to find the area of the quadrilateral $$PQRS$$

    Since $$PQRS$$ is a quadrilateral, $$\vec{PR}, \vec{QS}$$ are diagonals.

    Thus the area of the quadrilateral $$PQRS$$ $$=\dfrac{1}{2} |\vec{PR} \times \vec{QS}|$$

    Now let us find $$\vec{PR} \times \vec{QS}$$

    $$\vec{PR} \times \vec{QS}=\begin{vmatrix}\vec{i} & \vec{j} & \vec{k} \\ 2&1&1 \\ -1&3&2\end{vmatrix}$$

                       $$=(2-3)\vec{i}-(4+1)\vec{j}+(6+1)\vec{k}$$

    $$\therefore \vec{PR} \times \vec{QS}=-\vec{i}-5\vec{j}+7\vec{k}$$

    Now $$|\vec{PR} \times \vec{QS}|=\sqrt{(-1)^2+(-5)^2+7^2}=\sqrt{75}=5\sqrt{3}$$

    Thus the area of the quadrilateral $$PQRS$$ $$=\dfrac{5\sqrt{3}}{2} $$
  • Question 7
    1 / -0
    If $$\overline {e} = l\overline {i} + m\overline {j} + n\overline {k}$$ is a unit vector, the maximum value of $$lm + mn + nl$$ is
    Solution
    Given $$\vec{e}$$ is unit vector, 

    $$\therefore l^2+m^2+n^2=1\dots \dots(1)$$

    We know that the square of any real number is always greater than zero.

    $$\Rightarrow (l+m+n)^2\ge0$$

    $$\Rightarrow l^2+m^2+n^2+2(lm+mn+nl)\ge 0$$

    From   $$(1)$$, we get

    $$lm+nm+nl\ge-\dfrac{1}{2}$$

  • Question 8
    1 / -0
    If $$|\vec {a}| = 3, |\vec {b}| = 4$$ and $$|\vec {a} - \vec {b}| = 7$$ then $$|\vec {a} + \vec {b}| =$$
    Solution
    We know that
    $$\Rightarrow| \vec{a}-\vec{b} |^2=| \vec{a} |^2 +| \vec{b} |^2-2| \vec{a} || \vec{b} |\cos{\theta}$$
    $$\Rightarrow 7^2=3^2+4^2-2(3)(4)\cos{\theta}$$
    $$\Rightarrow 49-9-16=-24\cos{\theta}$$
    $$\Rightarrow \cos{\theta}=-1$$

    $$\Rightarrow| \vec{a}+\vec{b} |^2=| \vec{a} |^2 +| \vec{b} |^2+2| \vec{a} || \vec{b} |\cos{\theta}$$
    $$\Rightarrow| \vec{a}+\vec{b} |^2=3^2 +4^2+2(3)(4)(-1)$$
    $$\Rightarrow| \vec{a}+\vec{b} |^2=9+16-24$$
    $$\Rightarrow| \vec{a}+\vec{b} |^2=1$$
    $$\Rightarrow| \vec{a}+\vec{b} |=1$$

    Hence, answer is option  $$A$$

  • Question 9
    1 / -0
    The projection of the vector $$\hat {i} - 2\hat {j} + \hat {k}$$ on the vector $$4\hat {i} - 4\hat {j} + 7\hat {k}$$ is
    Solution
    Projection of $$\vec a$$ on $$\vec b=\dfrac {\vec a\cdot\vec b}{|\vec b|}$$

    Projection of $$\hat i-2\hat j+\hat k$$ on vector $$4\hat i-4\hat j+7\hat k=\dfrac {4+8+7}{\sqrt {4^2+4^2+7^2}}=\dfrac {19}9$$

    So, Option B is correct.
  • Question 10
    1 / -0
    $$\overline { a } ,\overline { b } ,\overline { c } $$ are three vectors such that $$\left| \overline { a }  \right| =1,\left| \overline { b }  \right| =2,\left| \overline { c }  \right| =3$$ and $$\overline { b } ,\overline { c } $$ are perpendicular. IF projection of $$\overline { b } $$ on $$\overline { a } $$ is the same as the projection of $$\overline { c } $$ on $$\overline { a } $$, then $$\left| \overline { a } -\overline { b } +\overline { c }  \right| $$
    Solution
    $$\textbf{Step1-Apply condition of  Dot product of two vectors}$$
                   $$\text{It is given that projection of }$$$$\vec{b}$$ $$\text{on}$$ $$\vec{a}$$ $$\text{is same as the projection of}$$ $$\vec{c}$$ on $$\vec{a}$$.
                   $$\implies \vec{b}.\vec{a} = \vec{c}.\vec{a}$$              ...[1]
                   $$\text{Also,}$$ $$\vec{b}$$ $$\text{and}$$ $$\vec{c}$$ $$\text{are perpendicular}$$
                   $$\implies \vec{b}.\vec{c} = 0$$                  ...[2]
                   $$\text{Now,}$$
                   $$|\vec{a} - \vec{b} + \vec{c}|^2 = |\vec{a}|^2 +|\vec{b}|^2 +|\vec{c}|^2 -2\vec{b}.\vec{a} +2\vec{c}.\vec{a} -2\vec{b}.\vec{c} $$
                   $$|\vec{a} - \vec{b} + \vec{c}|^2 = |\vec{a}|^2 +|\vec{b}|^2 +|\vec{c}|^2 +0 $$                         ...(Using [1] and [2])
                   $$|\vec{a} - \vec{b} + \vec{c}|^2 = 1+4+9 = 14$$
                   $$\implies |\vec{a} - \vec{b} + \vec{c}| = \sqrt{14}$$
    $$\textbf{Hence , option C is correct}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now