Self Studies

Vector Algebra Test - 50

Result Self Studies

Vector Algebra Test - 50
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Let $$\vec {a} = x\hat {i} + 12\hat {j} - \hat {k}, \vec {b} = 2\hat {i} + 2x\hat {j} + \hat {k}$$ and $$\vec {c} = \hat {i} + \hat {k}$$. If ordered set $$[\vec {b} \vec {c} \vec {a}]$$ is left handed, then.
    Solution
    Given, 
    $$\vec { a } =x\hat { i } +12\hat { j } -\hat { k } \\ \vec { b } =2\hat { i } +2x\hat { j } +\hat { k } \\ \vec { c } =\hat { i } +\hat { k } $$
    the ordered set $$[\vec { b } \vec { c } \vec { a } ]$$ is left handed if and only if 
    $$[\vec { b } \vec { c } \vec { a } ]<0$$
    Now,
    $$[\vec { b } \vec { c } \vec { a } ]=\vec { b } .(\vec { c } \times \vec { d } )=2{ x }^{ 2 }+2x-12=(2x-4)(x+3)$$
    the expression $$2{ x }^{ 2 }+2x-12$$ is negative when $$x\quad \epsilon (-3,2)$$
    Hence $$[\vec { b } \vec { c } \vec { a } ]$$ is left handed for $$x\quad \epsilon (-3,2)$$

  • Question 2
    1 / -0
    Which is a unit vector?
    Solution
    $$(\sin \alpha/\cos\alpha)$$
    Let $$\vec{a}=\sin\alpha\hat{i}$$$$+\cos\alpha\hat{j}\implies |\vec{x}|=\sqrt{\sin^2\alpha+\cos^2\alpha}=1$$
    $$\therefore (\sin\alpha,\cos\alpha)$$ is a unit vector.
  • Question 3
    1 / -0
    If $$\vec {a}$$ and $$\vec {b}$$ are unit vectors, then angle between $$\vec {a}$$ and $$\vec {b}$$ for $$\sqrt {3} \vec {a} - \vec {b}$$ to be unit vector is
    Solution
    $$\textbf{Step 1: Dot product of vectors}$$
    Let angle between $$\vec{a}$$ and $$\vec{b}$$ is $$\theta$$
    Dot product between them:
    $$\vec{a}\cdot \vec{b} = |\vec{a}| |\vec{b}|\cos \theta$$
    As $$\vec{a}$$ and $$\vec{b}$$ are unit vetors therefore $$|\vec{a}|=|\vec{b}|=1$$ 
    $$\Rightarrow \vec{a}\cdot \vec{b} = \cos \theta$$                $$....(1)$$

    $$\textbf{Step 2: Equation formation}$$
    For $$\sqrt{3}\vec{a}-\vec{b}$$ to be a unit vector,
                   $$|\sqrt{3}\vec{a} - \vec{b}|^2  = 1$$

              $$\Rightarrow (\sqrt{3})^2 |\vec{a}|^2 + |\vec{b}|^2 - 2\sqrt{3} \vec{a}\cdot \vec{b}  = 1$$

               $$\Rightarrow  (\sqrt{3})^2 (1)^2 + (1)^2 - 2\sqrt{3} \cos \theta=1$$                           [ Using $$(1)$$]

               $$\Rightarrow  4 - 2\sqrt{3} \cos\theta=1$$         

               $$\Rightarrow$$  $$\dfrac{-3}{-2\sqrt{3}} = \cos \theta$$

                $$\Rightarrow$$  $$\cos \theta = \dfrac{\sqrt{3}}{2}$$

                $$\Rightarrow$$   $$\theta = 30^o$$
    Hence option $$D$$ is correct.

  • Question 4
    1 / -0
    If $$ \vec a+2\vec b+3 \vec c =0$$, then $$\vec{b}\times \vec{c}+\vec{c}\times \vec{a}+\vec{a} \times \vec{b}$$ equals to:
    Solution
    $$\vec a+2{\vec b}+3{\vec c}=0$$
    $$(\vec a+2\vec b+3\vec c)\times \vec c=0\implies \vec c\times \vec a=2(\vec b\times \vec c)$$
    $$(\vec a+2\vec b+3\vec c)\times \vec b=0\implies \vec a\times \vec b=3(\vec b\times \vec c)$$
    $$\vec b\times \vec c+\vec c\times \vec a+\vec a\times \vec b=(\vec b\times \vec c)+2(\vec b\times \vec c)+3(\vec b\times \vec c)=6(\vec b\times \vec c)=3(\vec c\times \vec a)=2(\vec a\times \vec b)$$
  • Question 5
    1 / -0
    Let $$\overline a ,\overline b ,\overline c $$ be vectors of length $$3, 4, 5 $$respectively. Let $$\overline a $$ be perpendicular to $$\overline b  + \overline c ,\overline b \,to\,\overline c  + \overline a \,{\text{and}}\,\overline c \,{\text{to}}\,\overline a  + \overline b .\,{\text{Then}}|\overline a  + \overline b  + \overline c |$$ is equals to:
    Solution
    According to question,
    $$\vec { a } .\left( \vec { b } +\vec { c }  \right) =0$$
    $$\vec { b } .\left( \vec { c } +\vec { a }  \right) =0$$
    $$\vec { c } .\left( \vec { a } +\vec { b }  \right) =0$$
    $$\Rightarrow \quad \vec { a } .\vec { b } +\vec { a } .\vec { c } =0\quad \quad \quad \rightarrow \left( 1 \right) $$
    $$\Rightarrow \quad \vec { b } .\vec { c } +\vec { b } .\vec { a } =0\quad \quad \quad \rightarrow \left( 2 \right) $$
    $$\Rightarrow \quad \vec { c } .\vec { a } +\vec { c } .\vec { b } =0\quad \quad \quad \rightarrow \left( 3 \right) $$
    $${ \left| \vec { a } +\vec { b } +\vec { c }  \right|  }^{ 2 }={ \left| a \right|  }^{ 2 }+{ \left| b \right|  }^{ 2 }+{ \left| c \right|  }^{ 2 }+2\left( \vec { a } .\vec { b } +\vec { b } .\vec { c } +\vec { a } .\vec { c }  \right) \quad \quad \quad \rightarrow (4) $$
    Adding (1), (2) and (3), 
    $$2\left( \vec { a } .\vec { b } +\vec { b } .\vec { c } +\vec { a } .\vec { c }  \right) =0\quad \quad \quad (\because \vec { a } .\vec { b } =\vec { b } .\vec { a } )$$
    $$\Rightarrow { \left| \vec { a } +\vec { b } +\vec { c }  \right|  }^{ 2 }={ \left| a \right|  }^{ 2 }+{ \left| b \right|  }^{ 2 }+{ \left| c \right|  }^{ 2 }+0$$
    $$\Rightarrow \quad { \left| \vec { a } +\vec { b } +\vec { c }  \right|  }^{ 2 }=9+16+25=50$$
    $$\Rightarrow \quad { \left| \vec { a } +\vec { b } +\vec { c }  \right|  }=5\sqrt { 2 } $$
  • Question 6
    1 / -0
    If the projection of $$\vec{a}$$ on $$\vec{b}$$ and the projection of $$\vec{b}$$ on $$\vec{a}$$ are equal then the angle between $$\vec{a}+\vec{b}$$ and $$\vec{a}-\vec{b}$$ is
    Solution
    Projection of $$\vec{a}$$ on $$\vec{b}$$ $$=\large{\frac{\vec{a}.\vec{b}}{|\vec{b}|}}$$, and projection of $$\vec{b}$$ on $$\vec{a}$$ $$=\large{\frac{\vec{a}.\vec{b}}{|\vec{a}|}}$$
    $$\therefore  \large{\frac{\vec{a}.\vec{b}}{|\vec{b}|}}=\large{\frac{\vec{a}.\vec{b}}{|\vec{a}|}}$$
    $$\therefore |\vec{b}|=|\vec{a}|$$.
    Now, angle between $$\vec{a}+\vec{b}$$ and $$\vec{a}-\vec{b}$$ be $$\theta$$.
    Then $$\cos \theta=\large{\frac{(\vec{a}+\vec{b}).(\vec{a}-\vec{b})}{|\vec{a}+\vec{b}||\vec{a}-\vec{b}|}}$$
    or, $$\cos \theta =\large{\frac{|\vec{a}|^2-|\vec{b}|^2}{|\vec{a}+\vec{b}||\vec{a}-\vec{b}|}}$$
    or, $$\cos \theta =0$$     [Since, $$ |\vec{b}|=|\vec{a}|$$]
    or, $$\theta=\large{\frac{\pi}{2}}$$
  • Question 7
    1 / -0
    If $$\vec a$$ is perpendicular to $$\vec b$$ and $$\vec c,$$ then
    Solution
    If $$\vec { a } $$ is perpendicular to both $$\vec { b } \quad and\quad \vec { c } $$
    Let $$\vec { a } =\hat { i } $$
    If $$\vec { b } =2\hat { j } $$
    and $$\vec { c } =4\hat { j } $$
    $$\therefore \quad \vec { a } \quad is\quad \bot \quad both\quad \vec { b } \quad and\quad \vec { c } $$
    and $$\quad \vec { b } \times \vec { c } =\vec { 0 } $$ (null vector)
    $$\Rightarrow \quad \vec { a } \times \left( \vec { b } \times \vec { c }  \right) \quad =\vec { 0 } $$
    Similarly, If $$\vec { b } =4\hat { k } $$
                       $$\vec { c } =5\hat { k } $$
    $$\Rightarrow \quad \vec { a } \times \left( \vec { b } \times \vec { c }  \right) \quad =\vec { 0 } $$
    Now, If $$\vec { b } =5\hat { j } $$
                       $$\vec { c } =9\hat { k } $$
    $$\Rightarrow \quad \vec { a } \times \left( \vec { b } \times \vec { c }  \right) \quad =\vec { 0 } $$
    ($$\because \quad \vec { b } \times \vec { c } $$ results in a vector along $$\hat { i } $$ )
    On R.H.S, $$0$$ is scalar is given and cross product of two vectors can never be scalar, hence it is actually null vector.
  • Question 8
    1 / -0
    Let $$\vec{a} = 2 \hat{i} - \hat{j} + \hat{k}, \,\,\vec{b} = \hat{i} + 2\hat{j} - \hat{k}$$ and $$\vec{c} = \vec{i} + \vec{j} - 2\vec{k} $$ be three vectors. A vector of the type $$\vec{b} + \lambda \vec{c}$$ for some scalar $$\lambda$$, whose projection on $$\vec{a}$$ is of magnitude $$\sqrt {\frac{2}{3}}$$. Thenthe value of $$\lambda$$ is
    Solution

    Consider the given vectors,

    $$\overrightarrow{a}=2\widehat{i}-\widehat{j}+\widehat{k},\overrightarrow{b}=\widehat{i}+2\widehat{j}-\widehat{k},\overrightarrow{c}=\widehat{i}+\widehat{j}-2\overrightarrow{k}$$


    Given that  projection of $$\overrightarrow{b}+\lambda \overrightarrow{c}$$ on $$\overrightarrow{a}$$ =$$\sqrt{\dfrac{2}{3}}$$

    Hence, 

    $$\dfrac{\left[ \overrightarrow{b}+\lambda \overrightarrow{c} \right].\overrightarrow{a}}{\left| \overrightarrow{a} \right|}$$ =$$\sqrt{\dfrac{2}{3}}$$


    $$ \dfrac{\left[ \widehat{i}+2\widehat{j}-\widehat{k}+\lambda \left( \widehat{i}+\widehat{j}-2\widehat{k} \right) \right].\left( 2\widehat{i}-\widehat{j}+\widehat{k} \right)}{\left| 2\widehat{i}-\widehat{j}+\widehat{k} \right|}=\sqrt{\dfrac{2}{3}} $$

    $$ \dfrac{\left[ \left( 1+\lambda  \right)\widehat{i}+\left( 2+\lambda  \right)\widehat{j}+\left( 1-2\lambda  \right)\widehat{k} \right].\left( 2\widehat{i}-\widehat{j}+\widehat{k} \right)}{\sqrt{{{2}^{2}}+{{\left( -1 \right)}^{2}}+{{1}^{2}}}}=\sqrt{\dfrac{2}{3}} $$

    $$ \dfrac{\left( 1+\lambda  \right).2+\left( 2+\lambda  \right)\left( -1 \right)+\left( 1-2\lambda  \right)\left( 1 \right)}{\sqrt{6}}=\sqrt{\dfrac{2}{3}} $$

    $$ 2+2\lambda -2-\lambda +1-2\lambda =\sqrt{\dfrac{2}{3}}.\sqrt{6} $$

    $$ -\lambda +1=2 $$

    $$ -\lambda =1 $$

    $$ \lambda =-1 $$


    Hence, this is the answer.

  • Question 9
    1 / -0
    the resultant of two vectors $$\overline {A\,} {\text{and}}\,\overline B $$ makes an angle $$\alpha \,{\text{with}}\,\overline A $$ and $$\beta \,with\,\overline B $$. If $$A = |\overline A |,B = |\overline B |$$, then 
    Solution
    $$\textbf{Given}:$$ The angle of resultant with Vector A = $$\alpha$$ 
                    The angle of vector B with Resultant = $$\beta$$

    $$\textbf{Solution}:$$
    From the given data, the total angle between Vector A and Vector B = $$\alpha + \beta$$
    Now,
    $$A =  R  cos \alpha$$
    $$B  =  R  cos\beta$$
    If $$ \alpha < \beta$$
    Then, 
    $$cos\alpha >  cos\beta$$
    $$= R  cos\alpha >   R  cos\beta$$
    Hence,
    A  >   B
    thus, it can be said 
    A  >  B   and $$\alpha < \beta$$


    $$\textbf{Hence C is the correct option}$$


  • Question 10
    1 / -0
    If $$\overrightarrow a =3\widehat{i}-2\widehat{j}+\widehat{k}$$ and $$\overrightarrow b =2\widehat{i}-4\widehat{j}-3\widehat{k}$$, find $$|\overrightarrow a -2\overrightarrow b|$$.
    Solution
    $$\overrightarrow a-2\overrightarrow b=(3\widehat{i}-2\widehat{j}+\widehat{k})-2(2\widehat{i}-4\widehat{j}-3\widehat{k})=-\widehat{i}+6\widehat{j}+7\widehat{k}$$
    Therefore,
    $$|\overrightarrow a-2\overrightarrow b|=|-\widehat{i}+6\widehat{j}+7\widehat{k}|=\sqrt{(-1)^2+6^2+7^2}=\sqrt{86}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now