Self Studies

Vector Algebra Test - 51

Result Self Studies

Vector Algebra Test - 51
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Given: $$\vec a$$ and $$\vec b$$ are unit vector, and $$\theta $$ be the angle between them.
    Then $$\dfrac{{1 - \vec a.\vec b}}{{1 + \vec a.\vec b}} = $$
    Solution
    $$\vec a \cdot \vec b = \cos \theta $$
    $$\vec a \cdot \vec b = \cos \theta $$
    $$\dfrac{{1 - \cos \theta }}{{1 + \cos \theta }} = {\tan ^2}\frac{\theta }{2}$$
  • Question 2
    1 / -0
    Given that P = 12, Q = 5 and R = 13 also $$\vec P + \vec Q = \vec R$$, then the angle between $$\vec P$$ and $$\vec Q$$ will be :
    Solution
    Consider the problem 
    Let $$x$$ is the angle between $$P$$ and $$Q$$ .

    $$\vec R=\vec P+\vec Q $$

    $$\therefore 13=\sqrt { ({ 5^{ 2 } }+{ { 12 }^{ 2 } }+(2{ { \times  } }5{ { \times  } }12\times Cosx)) } $$      [$$\because|\vec a+\vec b|=\sqrt{a^2+b^2+2ab\cos\theta}$$ ]

    $$\Rightarrow  169=169{ { + } }120\cos  x $$

    $$\Rightarrow  0=120\cos  x $$

    $$\Rightarrow  \cos  x=0 $$


    $$\therefore x=90^{\circ}=\dfrac{\pi}{2}$$

    Hence option $$B$$ is the correct answer.
  • Question 3
    1 / -0
    A vector of magnitude 5 and perpendicular to $$\hat i - 2\hat j + \hat k$$ and $$2\hat i + \hat j - 3\hat k$$ is 
    Solution
    Let the vectors 
    $$\begin{array}{l}\vec a=\hat { i } -2\hat { j } +\hat { k }  \\\vec b=2\hat { i } +\hat { j } -3\hat { k }  \end{array}$$
    and the vector perpendicular to $$a$$ and $$b$$ let it is $$c$$.
    Now, for perpendicular
    $$\vec c=\vec a \times \vec b$$ 
    $$\vec { a } \times \vec { b } =\left| { \begin{array} { *{ 20 }{ c } }{ \hat { i }  } & { \hat { j }  } & { \hat { k }  } \\ 1 & { -2 } & 1 \\ 2 & 1 & { -3 } \end{array} } \right| $$
    $$ = 5\hat i + 5\hat j + 5\hat k$$
    $$\left| {\vec a \times \vec b} \right| = \sqrt {25 + 25 + 25}  = 5\sqrt 3 $$
    Unit vector along $$c$$ is $$\frac{1}{5\sqrt 3}(5 \hat i+5 \hat j+5\hat k)=\frac{1}{\sqrt3}(\hat i+\hat j+\hat k)$$
    and and vector of magnitude $$5$$
    $$=\frac{5}{\sqrt 3}(\hat i+\hat j+\hat k) = \frac{{5\sqrt 3 }}{3}\left( {\hat i + \hat j + \hat k} \right)$$
  • Question 4
    1 / -0
    The vertices of a triangle are $$A(1,1,2),B(4,3,1)$$ and $$C(2,3,5).$$ A vector representing the internal bisector of the angle $$A$$ id 
    Solution
    $$\overrightarrow{AB}=(4-1)\hat i +(3-1)\hat j+(1-2)\hat k=3\hat i+2\hat j -1\hat k$$
    $$\overrightarrow{AC}=(2-1)\hat i +(3-1)\hat j+(5-2)\hat k=1\hat i+2\hat j+3\hat k$$
    Bisector of two vectors is given by $$\overrightarrow{c}=||b||\overrightarrow{a}+||a||\overrightarrow{b}$$
    $$||AB||=\sqrt{3^2+2^2+1^2}=\sqrt{9+4+1}=\sqrt{15}$$
    $$||AC||=\sqrt{1^2+2^2+3^2}=\sqrt{1+4+9}=\sqrt{15}$$
    Bisector of $$\overrightarrow{AB}$$ and $$\overrightarrow{AC}=||AC||\overrightarrow{AB}+||AB||\overrightarrow{AC}$$
    $$\Rightarrow\sqrt{15}(3\hat i+2\hat j -1\hat k)+\sqrt{15}(1\hat i+2\hat j+3\hat k)$$
    $$\Rightarrow \sqrt{15}(4\hat i+4\hat j +2\hat k)$$
    Simplifying the vector $$\dfrac{\sqrt{15}(4\hat i+4\hat j +2\hat k)}{\sqrt{15}\times 2}$$
    $$\Rightarrow 2\hat i+2\hat j +1\hat k$$
  • Question 5
    1 / -0
    A unit vector along the direction $$\hat i + \hat j + \hat k$$ has a magnitude:
    Solution
    $$A\quad unit\quad vector\quad along\quad any\quad direction\quad always\quad has\quad magnitude=1$$
    $$ C)Ans.$$
  • Question 6
    1 / -0
    Four forces act on a point object. The object will be in equilibrium, if:
    Solution
    the equilibrium condition is obtained when the net force acting on the body is zero. and a closed polygon of 4 sides will give the resultant force as zero and forcing acting will be in the same plane
  • Question 7
    1 / -0
    The vector that must be added to the vector $$\hat{i}-3\hat{j}+2\hat{k}$$ and $$3\hat{i}+6\hat{j}-7\hat{k}$$ so that the resultant vector is a unit vector along the y-axis is:
    Solution
    $$\textbf{Step 1: Equation formation as per given data}$$
    Let vector $$\vec{C}$$ is added to vector $$\vec{A}$$ and $$\vec{B}$$ to give a resultant unit vector along $$y$$-axis.

                   $$\therefore \vec{A} + \vec{B} + \vec{C} = \hat{j}$$

    $$\textbf{Step 2: Solving equation}$$
                   $$(\hat{i} - 3\hat{j} + 2 \hat{k}) + (3 \hat{i} + 6 \hat{j} - 7 \hat{k}) + \vec{C} = \hat{j}$$

                   $$\vec{C} = -4 \hat{i} - 2 \hat{j} + 5 \hat{k}$$

    Hence the vector is $$\vec{C} = -4 \hat{i} - 2\hat{j} + 5 \hat{k}$$. 
    Option $$B$$ is correct.
  • Question 8
    1 / -0
    If $$\left| {\overrightarrow A  \times \overrightarrow B | = \sqrt 3 \overrightarrow {A.} \overrightarrow B } \right.$$ then the value of $$\left| {\overrightarrow A  + \overrightarrow B } \right|$$ is:
    Solution
    $${\textbf{Step -1: Find angle and use vector formula.}}$$
                      $${\text{We know that,}}$$
                      $$\Rightarrow \bar A× \bar B=ABsinθ$$
                      $${\text{Also,}}$$  $$ \bar A. \bar B=ABcosθ$$
                      $${\text{Given :}}$$    $$∣ \bar A× \bar B∣= \sqrt3A.B$$
                      $${\text{Using}}$$      $$∣ \bar A× \bar B∣=∣ \bar A∣∣ \bar B∣sinθ$$
                      $${\text{We get,}}$$  $$∣ \bar A× \bar B∣=ABsinθ$$
                      $$\Rightarrow \bar A.\bar B=∣ \bar A∣∣ \bar B∣cosθ$$
                      $$∴  ABsinθ= \sqrt3ABcosθ$$
                      $$\Rightarrow tanθ=\sqrt 3$$  $$⟹θ=60 ^\circ$$
     $${\textbf{Step -2: Find }}$$ $${\mathbf{| \bar A + \bar B|.}}$$
                        $${\text{Now}}$$  $$(A+B)^2=A^2+B^2+2A.B$$
                        $$=A^2+B^2+2ABcosθ$$
                        $$=A^2+B^2+2AB× \dfrac{1}{2}$$
    ​                    $$=A^2+B^2+AB$$
                        $${\text{or}}$$ $$∣ \bar A+\bar B∣=(A^2+B^2+AB)^{\frac{1}{2}}$$
    $${\textbf{ Hence, the option (D) is correct.}}$$
  • Question 9
    1 / -0

      Which of the following is the unit vector perpendicular to $$ \vec{A} $$ and $$ \vec{B} $$ ?

    Solution

  • Question 10
    1 / -0
    The vector equation of the plane containing the line $$\vec {r}=(-2\hat {i}-3\hat {j}+4\hat {k})+\lambda(3\hat {i}-2\hat {j}-\hat {k})$$ and the point $$\hat {i}+2\hat {j}+3\hat {k}$$ is:
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now