Self Studies

Vector Algebra Test - 53

Result Self Studies

Vector Algebra Test - 53
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$ABC$$ is a triangle, the point $$P$$ is on side $$BC$$ such that $$3\vec {BP}=2\vec {PC}$$, the point $$Q$$ is on the line $$\vec {CA}$$ such that $$4\vec {CQ}=\vec {QA}$$. If $$R$$ is the common point of $$\vec {AP}$$ & $$\vec {BQ}$$, then the ratio in which the line joining $$CR$$ divides $$\vec {AB}$$ is
    Solution
    We have,
    $$\begin{matrix} \frac { { BP } }{ { PC } } =\frac { 2 }{ 3 } \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, PV\, \, of\, P=\frac { { 2\overrightarrow { c } +3\overrightarrow { b }  } }{ 5 }  \\ \frac { { QA } }{ { CQ } } =4\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, PV\, \, of\, Q=\frac { { 4\overrightarrow { c }  } }{ 5 }  \\  \end{matrix}$$
    Let R divides $$BQ$$ in $$\lambda :1$$ and AP in $$\mu :1$$
    $$\begin{matrix} \frac { { \lambda \frac { { 4\overrightarrow { c }  } }{ 5 } +\overrightarrow { b }  } }{ { \lambda +1 } } =\frac { { \mu \left( { \frac { { 2\overrightarrow { c }  } }{ 5 } +\frac { 3 }{ 5 } \overrightarrow { b }  } \right)  } }{ { \mu +1 } }  \\ \frac { { 4\lambda  } }{ { 5\left( { \lambda H } \right)  } } \overrightarrow { c } +\frac { 1 }{ { \lambda H } } \overrightarrow { b } =\frac { { 2\mu  } }{ { 5\left( { \mu H } \right)  } } \overrightarrow { c } +\frac { { 3\mu  } }{ { 5\left( { \mu H } \right)  } } \overrightarrow { b }  \\ \frac { { 4\lambda  } }{ { 5\left( { \lambda H } \right)  } } =\frac { { 2\mu  } }{ { 5\left( { \mu H } \right)  } }  \\ \frac { \lambda  }{ { \lambda H } } =\frac { { 3\mu  } }{ { 5\left( { \mu H } \right)  } }  \\ \frac { { 4\lambda  } }{ 5 } \frac { { 3\mu  } }{ { 5\left( { \mu H } \right)  } } =\frac { { 2\mu  } }{ { 5\left( { \mu H } \right)  } }  \\ \frac { { 4\lambda  } }{ 5 } \times 3=2 \\ 2\lambda =\frac { 5 }{ 3 }  \\ \lambda =\frac { 5 }{ 6 }  \\ PV\, \, of\, \, R=\frac { { \frac { 4 }{ 5 } \times \frac { 5 }{ 6 } \overrightarrow { c } +\overrightarrow { b }  } }{ { \frac { { 11 } }{ 6 }  } } =\frac { { \frac { 2 }{ 3 } \overrightarrow { c } +\overrightarrow { b }  } }{ { \frac { { 11 } }{ 6 }  } }  \\ PV\, \, \, ofR=\frac { { 12 } }{ { 33 } } \overrightarrow { c } +\frac { 6 }{ { 11 } } \overrightarrow { b }  \\  \end{matrix}$$
    Let E divides BA in $$r:1$$ and CR in $$\beta :1$$
    $$\begin{matrix} \frac { { \overrightarrow { b }  } }{ { rH } } =\frac { { \beta \overrightarrow { c } -\frac { { 12 } }{ { 33 } } \overrightarrow { c } -\frac { 6 }{ { 11 } } \overrightarrow { b }  } }{ { \beta -1 } }  \\ \frac { { \overrightarrow { b }  } }{ { rH } } =\frac { { \left( { \beta \overrightarrow { c } -\frac { 4 }{ { 33 } }  } \right) \overrightarrow { c } -\frac { 6 }{ { 11 } } \overrightarrow { b }  } }{ { \beta -1 } }  \\ \beta =\frac { 4 }{ { 11 } }  \\ \frac { 1 }{ { rH } } =\frac { { -6 } }{ { 11 } } \times \frac { 1 }{ { \frac { 4 }{ { 11 } } -1 } }  \\ =\frac { { -6 } }{ { 11 } } \times \frac { { 11 } }{ { -7 } }  \\ \frac { 1 }{ { rH } } =\frac { 6 }{ 7 }  \\ rH=\frac { 7 }{ 6 }  \\ e=\frac { 1 }{ 6 }  \\ \frac { { BE } }{ { AE } } =\frac { 1 }{ 6 }  \\ \frac { { AE } }{ { BE } } =\frac { 6 }{ 1 }  \\  \end{matrix}$$
    Then,
    Option $$D$$ is correct answer.
  • Question 2
    1 / -0
    If $$\hat {i},\hat {j},\hat {k}$$ are positive vectors of $$A,B,C$$ and $$\vec {AB}=\vec {CX}$$, then positive vector of $$X$$ is
    Solution

  • Question 3
    1 / -0
    Four persons $$P,\ Q,\ R$$ and $$S$$ are initially at the four corners of a square side $$d$$. Each person now moves with a constant speed $$v$$ in such a way that $$P$$ always moves directly towards $$Q,\ Q$$ towards $$R,\ R$$ towards $$S,$$ and $$S$$ towards $$P$$. The four persons will meet after time 
    Solution

    Here, velocity components will be $$v\cos 45=\dfrac{v}{\sqrt{2}}$$

    And, displacement will be $$\dfrac{d}{\sqrt{2}}$$

    So time taken will be

      $$ t=\dfrac{d}{v} $$

     $$ =\dfrac{\dfrac{d}{\sqrt{2}}}{\dfrac{v}{\sqrt{2}}}=\dfrac{d}{v} $$

     

  • Question 4
    1 / -0
    If $$\bar a + \bar b$$ is perpendicular to $$\bar b$$ and $$\bar a + 2\bar b$$ is perpendicular to $$\bar a$$ then. 

    Solution
    Since $$\vec a+\vec b$$ is $$\bot $$ to $$\vec b$$
    So,
    $$\vec b\cdot (\vec a+\vec b)=0$$

    $$\vec b.\vec a+\vec b.\vec b=0$$

    $$\vec a.\vec b+|\vec b|^2=0$$

    $$\vec a.\vec b=-|\vec b|^2$$   ----    $$(1)$$

    Also $$\vec a+2\vec b$$ is perpendicular to $$\vec a$$

    So,

    $$\vec a.(\vec a+2\vec b)=0$$

    $$\vec a.\vec a+2\vec a.\vec b=0$$

    $$|\vec a|^2+2\vec a.\vec b=0$$

    $$|\vec a|^2+2 \times -|\vec b|^2=0$$    from $$(1)$$

    $$|\vec a|=\sqrt 2|\vec b|$$
  • Question 5
    1 / -0

    Directions For Questions

    In a parallelogram OABC, vectors $$\vec{a}, \vec{b}, \vec{c}$$ are respectively the position vectors of vertices A, B, C with reference to O as origin. A point E is taken on the side BC which divides it in the ratio of $$2:1$$ internally. Also, the line segment AE intersect the line bisecting the angle O internally in point P. If CP, when extended meets AB in point F. Then?

    ...view full instructions

    The position vector of point P, is?
    Solution

    According to question:

    $$\begin{array}{l} B=\overrightarrow { a } +\overrightarrow { c }  \\ \overrightarrow { E } =\dfrac { { 2\overrightarrow { c } +\overrightarrow { a } +\overrightarrow { c }  } }{ 3 } =\dfrac { { 3\overrightarrow { c } +\overrightarrow { a }  } }{ 3 }  \\ then, \\ Position\, vector\, is: \\ \, \, \, \, \, \overrightarrow { OP } =\lambda \, (\overrightarrow { a } +\overrightarrow { c } )-----(i) \\ \, \, \, \, Now, \\ \, \, \, \, \, \, \, positon\, \, vector\, of\overrightarrow { \, p } : \\ \, \, \, \, \, \overrightarrow { p } =\overrightarrow { a } +\mu \left( { \dfrac { { 3\overrightarrow { c } +\overrightarrow { a }  } }{ 3 } -\overrightarrow { a }  } \right)  \\ \, \, \, \overrightarrow { p } =\overrightarrow { a } +\mu \left( { \dfrac { { 3\overrightarrow { c } -2\overrightarrow { a }  } }{ 3 }  } \right) -----(ii) \\ Now,\, equating\, \, eqn.\, \, (i)\, \, \& \, (ii) \\ \lambda \, \left( { \dfrac { { \overrightarrow { a }  } }{ { \left| { \overline { a }  } \right|  } } +\dfrac { { \overrightarrow { c }  } }{ { \left| { \overline { c }  } \right|  } }  } \right) =\overrightarrow { a } +\dfrac { \mu  }{ 3 } \left( { 3\overrightarrow { c } -2\overrightarrow { a }  } \right)  \\ \dfrac { \lambda  }{ { \left| { \overline { a }  } \right|  } } =1-\dfrac { { 2\mu  } }{ 3 } \, \, \, \, \, \, \, (cofficient\, compare) \\ \dfrac { \lambda  }{ { \left| { \overline { a }  } \right|  } } =\dfrac { { 3\mu  } }{ 3 } ,\, \, \, \, \, \, \, \, \, \mu =\dfrac { \lambda  }{ { \left| { \overline { a }  } \right|  } }  \\ And, \\ \dfrac { \lambda  }{ { \left| { \overline { a }  } \right|  } } =1-\dfrac { 2 }{ 3 } .\, \dfrac { \lambda  }{ { \left| { \overline { c }  } \right|  } }  \\ \lambda \left( { \dfrac { 1 }{ { \left| { \overline { a }  } \right|  } } +\dfrac { 2 }{ 3 } .\, \dfrac { 1 }{ { \left| { \overline { c }  } \right|  } }  } \right) =1 \\ \lambda =\dfrac { { 3\left| { \overline { a }  } \right| \, \left| { \overline { c }  } \right|  } }{ { 3\left| { \overline { c }  } \right| +2\left| { \overline { a }  } \right|  } }  \\ \, positon\, \, vector\, of\overrightarrow { \, p } : \\ \overrightarrow { p } =\dfrac { { 3\left| { \overline { a }  } \right| \, \left| { \overline { c }  } \right|  } }{ { 3\left| { \overline { c }  } \right| +2\left| { \overline { a }  } \right|  } } \, \, \, \left( { \dfrac { { \overrightarrow { a }  } }{ { \left| { \overline { a }  } \right|  } } +\dfrac { { \overrightarrow { c }  } }{ { \left| { \overline { c }  } \right|  } }  } \right)  \\ so\, ,\, the\, correct\, \, option\, is\, A. \end{array}$$

  • Question 6
    1 / -0
    If $$\overline { a } =\cfrac { 1 }{ \sqrt { 10 }  } \left( 3\overline { i } +\overline { k }  \right) ;\overline { a } =\cfrac { 1 }{ 7 } \left( 2\overline { i } +3\overline { j } -6\overline { k }  \right) $$ then the value of
    $$(2\overline { a } -\overline { b } ).[(\overline { a } \times \overline { b } )\times (\overline { a } +2\overline { b } )]$$
    Solution

  • Question 7
    1 / -0
    If $$\vec a,\vec b,\vec c$$ non-zero vectors such that $$\vec a$$ is perpendicular to $$\vec b$$ and $$\vec c$$ and non-zero  vector coplanar with $$\vec a + \vec b$$ and $$2\vec b - \vec c$$ and $$\vec d.\vec a = 1$$ , then the minimum value of $$\left| {\vec d} \right|$$
  • Question 8
    1 / -0
    Let $$\vec{a},\vec{b},\vec{c}$$ be three non-zero vectors such that $$\vec{a}+\vec{b}+\vec{c}=0$$ and $$\lambda \vec{b}\times \vec{a}+\vec{b}\times \vec{c}+\vec{c}\times \vec{a}=0$$, then $$\lambda$$ is
    Solution

  • Question 9
    1 / -0
    If $$a,b,c \in N$$, the number of points having position vectors $$a\hat i + b\hat j + c\hat k$$ such that $$6 \le a + b + c \le 10$$ is
    Solution
    Given:$$6\le\,a+b+c\le \,10$$

    $$\because\,a,b,c,\in N$$

    $$\therefore\,a+b+c=6\,or\,7\,or\,8\,or\,9\,or\,10$$
    and $$a,b,c\ge 1$$

    $$\therefore\,x+y+x=3\,or\,4\,or\,5\,or\,6\,or\,7$$ where $$x,y,z\ge 1$$

    Let $$x=a-1,\,y=b-1,\,$$ and $$z=c-1$$

    $$\therefore\,$$Required number of points$$=^{3-1+3}C_{3}+^{3-1+4}C_{4}+^{3-1+5}C_{5}+^{3-1+6}C_{6}+^{3-1+7}C_{7}$$

    $$=^{5}C_{3}+^{6}C_{4}+^{7}C_{5}+^{8}C_{6}+^{9}C_{7}$$

    $$=\dfrac{5!}{3!2!}+\dfrac{6!}{2!4!}+\dfrac{7!}{5!2!}+\dfrac{8!}{6!2!}+\dfrac{9!}{7!2!}$$

    $$=\dfrac{20}{2}+\dfrac{30}{2}+\dfrac{42}{2}+\dfrac{56}{2}+\dfrac{72}{2}$$

    $$=10+15+21+28+36=110$$
  • Question 10
    1 / -0
    If $$\vec{a}$$ be any vector, then the value of $$|\vec{a} \times \hat{ i}|^2 + |\vec{a} \times \hat{j}|^2 + |\vec{a} \times \hat{k}|^2$$
    Solution
    Let $$\bar{a}=x\hat{i}+y\hat{j}+z\hat{k}$$
    $$(\bar{a}\times \hat{i})^{2}+(\bar{a}\times \hat{j})+|\bar{a}\times \hat{k}|^{2}$$
    $$\Rightarrow |-y\hat{k}+z\hat{i}|^{2}+|x\hat{k}-z\hat{i}|^{2}+|-x\hat{j}+y\hat{i}|^{2}$$
    $$\Rightarrow y^{2}+z^{2}+x^{2}+z^{2}+x^{2}+y^{2}$$
    $$\Rightarrow 2(x^{2}+y^{2}+z^{2})$$
    $$\Rightarrow 2|\bar{a}|^{2}$$
    $$\therefore (\bar{a}\times \hat{i})^{2}+|\bar{a}\times \hat{j}|^{2}+|\bar{a}\times \hat{k}|^{2}=2|\bar{a}|^{2}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now