Let $$A\left(5,-1,4\right)$$ and $$B\left(4,-1,3\right)$$ be a line
then $$\vec{AB}=\left(4-5\right)\hat{i}+\left(-1+1\right)\hat{j}+\left(3-4\right)\hat{k}$$
$$=-\hat{i}-\hat{j}$$
$$\left|AB\right|=\sqrt{{1}^{2}+{1}^{2}}=\sqrt{2}$$ units
Given:Equation of the plane is $$x+y+z=7$
Normal vector$$\vec{n}=\hat{i}+\hat{j}+\hat{k}$$
Equation of plane is $$\vec{r}.\hat{n}=d$$
$$\left(x\hat{i}+y\hat{j}+z\hat{k}\right).\left(\hat{i}+\hat{j}+\hat{k}\right)=7$$
$$\left|n\right|=\sqrt{1+1+1}=\sqrt{3}$$
Length of Projection $$AB$$ along the plane is $$P=\left|AB\right|\cos{\left(90-\theta\right)}=\left|AB\right|\sin{\theta}$$
Here $$\cos{\theta}=\dfrac{\vec{AB}.\vec{n}}{\left|AB\right|.\left|\vec{n}\right|}$$
$$=\dfrac{\left(-\hat{i}-\hat{j}\right).\left(\hat{i}+\hat{j}+\hat{k}\right)}{\left(\sqrt{2}\right).\left(\sqrt{3}\right)}$$
$$=\dfrac{-1-1+0}{\sqrt{6}}=-\dfrac{2}{\sqrt{6}}\times\dfrac{\sqrt{2}}{\sqrt{2}}=\dfrac{2\sqrt{2}}{2\sqrt{3}}=\dfrac{\sqrt{2}}{\sqrt{3}}$$
$$\Rightarrow\,\sin{\theta}=\sqrt{1-{\cos}^{2}{\theta}}=\sqrt{1-{\left(\dfrac{\sqrt{2}}{\sqrt{3}}\right)}^{2}}=\sqrt{1-\dfrac{2}{3}}=\dfrac{1}{\sqrt{3}}$$
Now,$$P=\left|AB\right|\sin{\theta}=\sqrt{2}\times\dfrac{1}{\sqrt{3}}=\sqrt{\dfrac{2}{3}}$$
$$\therefore\,$$Length of projection of line segment on the plane is $$\sqrt{\dfrac{2}{3}}$$