Self Studies

Vector Algebra Test - 56

Result Self Studies

Vector Algebra Test - 56
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If vectors $$\vec {A} = 2\hat {i} + 3\hat {j} + 4\hat {k}, \vec {B} = \hat {i} + \hat {j} + 5\hat {k}$$ and $$\vec {C}$$ form a left-handed system, then $$\vec {C}$$ is
    Solution

  • Question 2
    1 / -0
    Let $$\overrightarrow{a}=2\hat{i}-3\hat{j}+6\hat{k}$$ and $$\overrightarrow{b}=-2\hat{i}+3\hat{j}-\hat{k}$$ then projection of $$\overrightarrow{a}$$ on $$\overrightarrow{b} :$$ projection of $$\overrightarrow{b}$$ on $$\overrightarrow{a}=$$
    Solution
    Projection of $$\overrightarrow{a}$$ on $$\overrightarrow{b}$$
    $$ = $$ scalar components of $$\overrightarrow{a}$$ along $$\overrightarrow{b}$$
    $$=\dfrac{\overrightarrow{a}.\overrightarrow{b}}{\left|\overrightarrow{b}\right|}$$
    Projection of $$\overrightarrow{b}$$ on $$\overrightarrow{a}$$
    $$ = $$ scalar components of $$\overrightarrow{b}$$ along $$\overrightarrow{a}$$
    $$ = \dfrac{\overrightarrow{a}.\overrightarrow{b}}{\left|\overrightarrow{a}\right|}$$
    Ratio $$= \dfrac{\overrightarrow{a}.\overrightarrow{b}}{\left|\overrightarrow{b}\right|}:\dfrac{\overrightarrow{a}.\overrightarrow{b}}{\left|\overrightarrow{a}\right|}$$
    $$=\left|\overrightarrow{a}\right|:\left|\overrightarrow{b}\right|=7:3$$
    where$$\left|\overrightarrow{a}\right|=\sqrt{4+9+36}=\sqrt{49}=7$$
    $$\left|\overrightarrow{b}\right|=\sqrt{4+4+1}=\sqrt{9}=3$$
    Thus, the ratio is $$7:3$$
  • Question 3
    1 / -0
    If $$2\overrightarrow{a}+3\overrightarrow{b}+4\overrightarrow{c}=0 \Rightarrow \overrightarrow{a}\times \overrightarrow{b} + \overrightarrow{b}\times \overrightarrow{c} +\overrightarrow{c}\times \overrightarrow{a}=$$
    Solution
    $$2\overrightarrow{a}+3\overrightarrow{b}+4\overrightarrow{c}=0$$
    $$\Rightarrow \left(2\overrightarrow{a}+3\overrightarrow{b}+4\overrightarrow{c}\right)\times \overrightarrow{a}=0$$
    $$\Rightarrow 4\overrightarrow{c}\times \overrightarrow{a}=3\overrightarrow{a}\times \overrightarrow{b}$$              ..................$$\left(1\right)$$
    $$\left(2\overrightarrow{a}+3\overrightarrow{b}+4\overrightarrow{c}\right)\times\overrightarrow{b}=0$$
    $$\overrightarrow{a}\times \overrightarrow{b}=2\overrightarrow{b}\times \overrightarrow{c}$$            ............$$ \left(2\right)$$
    $$\overrightarrow{a}\times \overrightarrow{b}+\overrightarrow{b}\times \overrightarrow{c}+\overrightarrow{c}\times  \overrightarrow{a}$$
    $$ = \overrightarrow{a}\times \overrightarrow{b}+\dfrac{1}{2}\overrightarrow{a}\times \overrightarrow{b}+\dfrac{3}{4}\overrightarrow{a}\times \overrightarrow{b}$$
    $$ = \overrightarrow{a}\times \overrightarrow{b}\left(1+\dfrac{1}{2}+\dfrac{3}{4}\right)$$
    $$ = \dfrac{9}{4}\overrightarrow{a}\times \overrightarrow{b}$$
    $$ =3\times \dfrac{3}{4}\overrightarrow{a}\times \overrightarrow{b}$$
    $$=3\overrightarrow{c}\times\overrightarrow{a}$$ using $$\left(1\right)$$ and $$ \left(2\right)$$
  • Question 4
    1 / -0
    If $$|\vec{a}|=5, |\vec{a}-\vec{b}|=8$$ and $$|\vec{a}+\vec{b}|=10$$, then $$|\vec{b}|$$ is equal to :
    Solution
    $$\begin{array}{l} \left| { \vec { a }  } \right| =5,\left| { \vec { a } -\vec { b }  } \right| =8,\left| { \vec { a } +\vec { b }  } \right| =10 \\ { \left| { \vec { a } -\vec { b }  } \right| ^{ 2 } }=64 \\ { \left| { \vec { a }  } \right| ^{ 2 } }+{ \left| { \vec { b }  } \right| ^{ 2 } }-2\vec { a } \cdot \vec { b } =64 \\ { \left| { \vec { a } +\vec { b }  } \right| ^{ 2 } }=100 \\ { \left| { \vec { a }  } \right| ^{ 2 } }+{ \left| { \vec { b }  } \right| ^{ 2 } }-2\vec { a } \cdot \vec { b } =100 \\ { \left| { \vec { b }  } \right| ^{ 2 } }-2\vec { a } \cdot \vec { b } =39 \\ { \left| { \vec { b }  } \right| ^{ 2 } }+2\vec { a } \cdot \vec { b } =75 \\ 2{ \left| { \vec { b }  } \right| ^{ 2 } }=114 \\ { \left| { \vec { b }  } \right| ^{ 2 } }=57 \\ \left| { \vec { b }  } \right| =\sqrt { 57 }  \\ Hence,\, correct\, option\, is\, \left( B \right)  \end{array}$$
  • Question 5
    1 / -0
    Let $$\overrightarrow{a}=\hat{i}+2\hat{j}+\hat{k},\overrightarrow{b}=\hat{i}-\hat{j}+\hat{k}$$ and $$\overrightarrow{c}=\hat{i}+\hat{j}-\hat{k}$$ . A vector in the plane of $$\overrightarrow{a}$$ and $$\overrightarrow{b}$$, where projection on $$\overrightarrow{c}$$ is $$\dfrac{1}{\sqrt{3}}$$, is
    Solution
    A vector in the plane of $$\overrightarrow{a}$$ and $$\overrightarrow{b}$$ is 
    $$\overrightarrow{a}+\lambda \overrightarrow{b} =\left(\hat{i}+2\hat{j}+\hat{k}\right)+\lambda \left(\hat{i}-\hat{j}+\hat{k}\right)$$
    $$  =\left(1+\lambda\right)\hat{i}+\left(2-\lambda\right)\hat{j}+\left(1+\lambda\right)\hat{k}$$
    If projection on $$\overrightarrow{c}$$ is $$\dfrac{1}{\sqrt{3}}$$
    $$\Rightarrow \left(\overrightarrow{a}+\lambda \overrightarrow{b}\right).\dfrac{\overrightarrow{c}}{\left|\overrightarrow{c}\right|}=\pm \dfrac{1}{\sqrt{3}}$$
    $$\Rightarrow \left(\left(1+\lambda\right)\hat{i}+\left(2-\lambda\right)\hat{j}+\left(1+\lambda\right)\hat{k}\right)\dfrac {\left(\hat{i}+\hat{j}-\hat{k}\right)} {\sqrt{1+1+1}} =\pm \dfrac{1}{\sqrt{3}}$$
    $$\Rightarrow \dfrac{1+\lambda+2-\lambda-1-\lambda} {\sqrt{3}} =\pm \dfrac{1}{\sqrt{3}}$$
    $$\Rightarrow 2-\lambda=\pm 1$$
    $$\Rightarrow \lambda=2\pm 1$$$$\therefore \lambda=1$$ or $$3$$
    If $$\lambda =1, \overrightarrow{a}+\lambda \overrightarrow{b}=\left(1+1\right)\hat{i}+\left(2-1\right)\hat{j}+\left(1+1\right)\hat{k}$$
    $$ =2\hat{i}+\hat{j}+2\hat{k}$$
    If $$\lambda=3, \overrightarrow{a}+\lambda \overrightarrow{b} = \left(1+3\right)\hat{i}+\left(2-3\right)\hat{j}+\left(1+3\right)\hat{k}$$
    $$ =4\hat{i}-\hat{j}+4\hat{k}$$
  • Question 6
    1 / -0
    A person travels $$12\ km$$ in the southward direction and then travels $$5\ km$$ to the right and then travels $$15\ km$$ toward the right and finally travels $$5\ km$$ towards the east, how far is he from his starting place?
    Solution
    REF.Image
    $$\vec{OA}= 12km$$
    $$\vec{AB}= 5km$$
    $$\vec{BC}= 15 km$$
    $$\vec{CD}= 5 km$$
    To find $$\vec{OD}= ?$$
    after moving from $$\bar{O}$$ to $$\bar{A},\bar{B},\bar{C},\bar{D}$$ (along these directions)
    He reads north of stating point i.e. O.
    $$\therefore \bar{OD}$$ is southwards (3 km) from D or
    or $$\bar{OD}$$ is northwards (3 km) from O
    Option B is correct

  • Question 7
    1 / -0
    Let $$\overrightarrow{u}=\hat{i}+\hat{j},\overrightarrow{v}=\hat{i}-\hat{j},\overrightarrow{w}=\hat{i}+2\hat{j}+3\hat{k}$$ If $$\hat{n}$$ is a unit vector such that $$\overrightarrow{u}.\hat{n}=0$$ and $$\overrightarrow {v}.\hat{n}=0$$, then $$\left|\overrightarrow {w}.\hat{n}\right|=$$
    Solution
    $$\overrightarrow{u}.\hat{n}=0$$
    $$\overrightarrow{v}.\hat{n}=0$$
    $$\Rightarrow\hat{n}$$ is along $$\overrightarrow{u}\times\overrightarrow{v}$$
    $$=\begin{bmatrix}\hat{i}&\hat{j}&\hat{k}\\1&1&0\\1&-1&0\end{bmatrix}=-2k$$
    $$\therefore\hat{n}=\pm k$$   (unit vector)
    $$\overrightarrow{w}.\hat{n}=\left(\hat{i}+2\hat{j}+3\hat{k}\right).\left(\pm\hat{k}\right)$$
         $$=\pm 3$$
    $$\Rightarrow\left|\overrightarrow{w}.\hat{n}\right|=3$$ 
  • Question 8
    1 / -0
    Let $$\overrightarrow{a}=\hat{i}+2\hat{j}+\hat{k},\overrightarrow{b}=\hat{i}-\hat{j}+\hat{k}$$ and $$\overrightarrow{c}=\hat{i}+\hat{j}-\hat{k}$$ . A vector in the plane of $$\overrightarrow{a}$$ and $$\overrightarrow{b}$$, where projection on $$\overrightarrow{c}$$ is $$\dfrac{1}{\sqrt{3}}$$, is
    Solution
    A vector in the plane of $$\overrightarrow{a}$$ and $$\overrightarrow{b}$$ is $$\overrightarrow{a}+\lambda \overrightarrow{b} =\left(\hat{i}+2\hat{j}+\hat{k}\right)+\lambda \left(\hat{i}-\hat{j}+\hat{k}\right)$$
    $$ =\left(1+\lambda\right)\hat{i}+\left(2-\lambda\right)\hat{j}+\left(1+\lambda\right)\hat{k}$$
    If projection on $$\overrightarrow{c}$$ is $$\dfrac{1}{\sqrt{3}}$$
    $$\Rightarrow \left(\overrightarrow{a}+\lambda \overrightarrow{b}\right).\dfrac{\overrightarrow{c}}{\left|\overrightarrow{c}\right|}=\pm \dfrac{1}{\sqrt{3}}$$
    $$\Rightarrow \left(\left(1+\lambda\right)\hat{i}+\left(2-\lambda\right)\hat{j}+\left(1+\lambda\right)\hat{k}\right)\dfrac {\left(\hat{i}+\hat{j}-\hat{k}\right)} {\sqrt{1+1+1}} =\pm \dfrac{1}{\sqrt{3}}$$
    $$\Rightarrow \dfrac{1+\lambda+2-\lambda-1-\lambda} {\sqrt{3}} =\pm \dfrac{1}{\sqrt{3}}$$
    $$\Rightarrow 2-\lambda=\pm 1$$
    $$\Rightarrow \lambda=2\pm 1$$
    $$\therefore \lambda=1$$,or $$3$$
    If $$\lambda =1, \overrightarrow{a}+\lambda \overrightarrow{b}=\left(1+1\right)\hat{i}+\left(2-1\right)\hat{j}+\left(1+1\right)\hat{k}$$
    $$ =2\hat{i}+\hat{j}+2\hat{k}$$
    If $$\lambda=3, \overrightarrow{a}+\lambda \overrightarrow{b} = \left(1+3\right)\hat{i}+\left(2-3\right)\hat{j}+\left(1+3\right)\hat{k}$$
    $$ =4\hat{i}-\hat{j}+4\hat{k}$$
  • Question 9
    1 / -0
    let $$\overrightarrow{u},\overrightarrow{v},\overrightarrow{w}$$ be such that $$\left|\overrightarrow{u}\right|=1,\left|\overrightarrow{v}\right|=2,\left|\overrightarrow{w}\right|=3$$. If the projection of $$\overrightarrow{v}$$ along $$\overrightarrow{u}$$ is equal to the projection of $$\overrightarrow{w}$$ along $$\overrightarrow{u}$$ and $$\overrightarrow{v},\overrightarrow{w}$$ are perpendicular to each other, then$$\left|\overrightarrow{u}-\overrightarrow{v}+\overrightarrow{w}\right|=$$
    Solution
    Projection of  $$\overrightarrow{v}$$ along $$\overrightarrow{u} =\dfrac{\overrightarrow{u}.\overrightarrow{v}}{\left|\overrightarrow{u}\right|}=\overrightarrow{u}.\overrightarrow{v}$$
    Projection of $$\overrightarrow{w}$$ along $$\overrightarrow{u} =\overrightarrow{w}.\overrightarrow{u}$$
    $$\overrightarrow{v}\perp \overrightarrow{w} \Rightarrow \overrightarrow{v}.\overrightarrow{w}=0$$ and $$\overrightarrow{u}.\overrightarrow{v}=\overrightarrow{u}.\overrightarrow{w} \left(given\right)$$
    Now, $${\left|\overrightarrow{u}-\overrightarrow{v}+\overrightarrow{w}\right|}^{2} ={\left|\overrightarrow{u}\right|}^{2}+{\left|\overrightarrow{v}\right|}^{2}+{\left|\overrightarrow{w}\right|}^{2}-2 \overrightarrow{u}.\overrightarrow{v}-2 \overrightarrow{v}.\overrightarrow{w}+2 \overrightarrow{u}.\overrightarrow{w}$$
                              $$ = {1}^{2}+{2}^{2}+{3}^{2} = 14$$ on simplification
    $$\therefore \left|\overrightarrow{u}-\overrightarrow{v}+\overrightarrow{w}\right|=\sqrt{14}$$
  • Question 10
    1 / -0
    $$D,E\ and \ F$$ are the mid-point of the sides $$BC,CA \ and \ AB$$ respectively of the triangle $$ABC$$. Which of the following is true?
    Solution
      $$ From\,the\,figure $$
     $$ ED=DG\,\,\,............\left( i \right) $$
     $$ EG=AB\,\,\,\,...........\left( ii \right) $$
     $$ ED+DG=AB $$
     $$ \Rightarrow ED+ED=AB\,\,\,\,\,\,\,\,\,\,\left( from\left( i \right) \right) $$
     $$ 2ED=AB $$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now