Self Studies

Vector Algebra Test - 59

Result Self Studies

Vector Algebra Test - 59
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$M$$ and $$N$$ are the mid-points of the diagonals $$AC$$ and $$BD$$ respectively of a quadrilateral $$ABCD$$, then the value of $$\overline { AB } +\overline { AD } +\overline { CB } +\overline { CD } $$
    Solution
    $$\vec{AB}+\vec{AD}+\vec{CB}+\vec{CD}$$
    $$=\vec{b}-\vec{a}+\vec{d}-\vec{a}+\vec{b}+\vec{c}+\vec{d}-\vec{c}$$
    $$=2\vec{b}+2\vec{d}-2\vec{a}-2\vec{c}$$
    $$=2(\vec{b}+\vec{d}-\vec{a}-\vec{c})$$
    $$=4\left(\dfrac{\vec{b}+\vec{d}}{2}-\dfrac{\vec{a}+\vec{c}}{2}\right)$$
    $$=4(\vec{N}-\vec{M})$$
    $$=4\vec{MN}$$.

  • Question 2
    1 / -0
    If $$\overline { a } $$ and $$\overline { b } $$ include an angle of $${120}^{o}$$ and their magnitudes are $$2$$ and $$\sqrt{3}$$ then $$\overline { a } .\overline { b } $$ is
    Solution
    Given, $$|\vec{a}| = 2, \, |\vec{b}| = \sqrt{3}$$
    $$\theta = 120^o$$
    $$\vec{a} . \vec{b} = |\vec{a}| |\vec{b}| cos \theta$$
    $$= 2 \times \sqrt{3} \times cos \, 120^o$$
    $$= 2 \sqrt{3} \times \left(\dfrac{-1}{2} \right)$$
    $$\therefore \vec{a} . \vec{b} = - \sqrt{3}$$
  • Question 3
    1 / -0
    The perimeter of the triangle whose vertices are the points $$2\bar{i}-\bar{j}+\bar{k}, \bar{i}-3\bar{j}-5\bar{K},3\bar{i}-4\bar{j}-4\bar{j}-4\bar{k}$$ is 
    Solution
    Given position vector 

    $$A=2i-j+k$$

    $$B=i-3j+k$$

    $$C=3i-4j-4k$$

    Perimeter$$=|\overline{AB}|+|\overline{BC}|+|\overline{CA}|$$

    $$|\overline{AB}|=\sqrt{(2-1)^2+(-1+3)^2+(1+5)^2}=\sqrt{1+4+36}=\sqrt{41}$$

    $$|\overline{BC}|=\sqrt{(3-1)^2+(-4+3)^2+(-4+5)^2}=\sqrt{4+1+1}=\sqrt{6}$$

    $$|\overline{CA}|=\sqrt{(3-2)^2+(-4+1)^2+(-4-1)^2}=\sqrt{1+9+25}=\sqrt{35}$$

    $$\therefore$$ Perimeter$$=\sqrt{6}+\sqrt{35}+\sqrt{41}$$.
  • Question 4
    1 / -0
    If a,b,c are all non-zero, then the number of values of $$\lambda $$ such that $$a(-4\bar{i}+5\bar{j})+b(3\bar{i}-3\bar{j}+\bar{k})+c(\bar{i}+\bar{j}+3\bar{k})=\lambda (a\bar{i}+b\bar{j}+c\bar{k})$$ is :
    Solution

  • Question 5
    1 / -0
    If $$S$$ is the circumcentre, $$O$$ is the orthocentre of $$\triangle{ABC}$$, then $$\overline { SA } +\overline { SB } +\overline { SB } $$ equals
    Solution
    Given, 'S' is the circumcentre
    'O' is the orthocentre
    $$\vec{SA}=\vec{a}$$
    $$\vec{SB}=\vec{b}$$
    $$\vec{SC}=\vec{c}$$
    $$\vec{SO}=\vec{s}$$
    $$\vec{SP}||\vec{AO}$$
    $$\vec{SP}=\dfrac{\vec{SB}+\vec{SC}}{2}=\dfrac{\vec{b}+\vec{c}}{2}$$
    $$\vec{SP}=\lambda \vec{AO}$$
    $$\Rightarrow \dfrac{\vec{b}+\vec{c}}{2}=\lambda (\vec{s}-\vec{a})$$
    $$\Rightarrow \vec{s}=\dfrac{\vec{b}+\vec{c}}{2\lambda}+\vec{a}$$ …….$$(1)$$
    $$\vec{SQ}=\mu \vec{BO}$$
    $$\dfrac{\vec{a}+\vec{c}}{2}=\mu (\vec{s}-\vec{b})$$
    $$\Rightarrow \vec{s}=\dfrac{\vec{a}+\vec{c}}{2\mu}+\vec{b}$$ ……….$$(2)$$
    $$\vec{a}+\dfrac{\vec{b}+\vec{c}}{2\lambda}=\vec{b}+\dfrac{\vec{a}+\vec{c}}{2\mu}$$
    $$\Rightarrow \vec{a}+\dfrac{\vec{b^2}}{2\lambda}+\dfrac{\vec{c}}{2\lambda}=\vec{b}+\dfrac{\vec{a}}{2\mu}+\dfrac{\vec{c}}{2\mu}$$
    $$\therefore 1=\dfrac{1}{2\mu}$$
    $$\Rightarrow \mu =\dfrac{1}{2}$$
    $$\therefore \vec{s}=\vec{a}+\vec{c}+\vec{b}$$
    $$\therefore \vec{SO}=\vec{SA}+\vec{SB}+\vec{SC}$$.

  • Question 6
    1 / -0
    If $$\overline { a } =\left( 2\overline { i } -10\overline { j } +6\overline { k }  \right) ;\overline { b } =\left( 5\overline { i } -3\overline { j } +\overline { k }  \right) $$. The ratio of projection of $$\overline { a } $$ on $$\overline { b } $$ to projection of $$\overline { b } $$ on $$\overline { a } $$ is
    Solution
    $$\cfrac { Projection\quad of\quad \vec { a } \quad on\quad \vec { b } \quad  }{ Projection\quad of\quad \vec { b } \quad on\quad \vec { a }  } $$
    $$=\cfrac { \cfrac { \vec { a } .\vec { b }  }{ \left| \vec { b }  \right|  }  }{ \cfrac { \vec { b } .\vec { a }  }{ \left| \vec { a }  \right|  }  } =\cfrac { \left| \vec { a }  \right|  }{ \left| \vec { b }  \right|  } =\cfrac { \sqrt { 4+100+76 }  }{ \sqrt { 25+9+1 }  } =\cfrac { 2 }{ 1 } $$
  • Question 7
    1 / -0
    Let $$\bar{a},\bar{b}$$ be two noncollinear vectors. If $$A=(x+4y)\bar{a}+(2x+y+1)\bar{b},$$
    $$B=(y-2x+2)\bar{a}+(2x-3y-1)\bar{b} \quad and \quad 3A=2B$$ then (x,y) =
    Solution
    $$3A=(3x+12y)\bar{a}+(6x+3y+3)\bar{b}$$
    $$2B=(2y-4x+4)\bar{a}+(4x-6y-2)\bar{b}$$
    $$3A=2B$$
    $$\Rightarrow 3x+12y=2y-4x+4$$ & $$6x+3y+3=4x-6y-2$$
    $$7x+10y=4$$ & $$2x+9y=-5$$
    Solving $$7x+10y=4$$ & $$2x+9y=-5$$
    We get $$x=2$$, $$y=-1$$
    $$\therefore (x, y)=(2, -1)$$.

  • Question 8
    1 / -0
    If $$\overline { a } $$ is a vector of magnitude $$\sqrt{3}$$ and $$\overline { b } $$ is unit vector making an angle $$\tan ^{ -1 }{ \left( 1/\sqrt { 2 }  \right)  } $$ with $$\overline { a } $$ then projection of $$\overline { a } $$ on $$\overline { b } $$ is
    Solution
    $$\left| \vec { a }  \right| =\sqrt 3$$, $$\left| \vec { b }  \right| =1$$
    $$\tan \theta =\cfrac{1}{\sqrt 2}$$
    $$\vec { a } .\vec { b } =\left| \vec { a }  \right| \left| \vec { b }  \right| \cos \theta$$
    $$=\sqrt 3 \times 1\times \cfrac{\sqrt 2}{\sqrt 3}$$
    $$=\sqrt 2$$
    Projection of $$\vec { a } $$ on $$\vec { b } $$ $$=\cfrac { \vec { a } .\vec { b }  }{ \left| \vec { b }  \right|  } $$
    $$=\cfrac{\sqrt 2}{1}=\sqrt 2$$
  • Question 9
    1 / -0
    Given $$\vec{\alpha} = 3\hat{i} + \hat{j} + 2\hat{k}\ ,\ \vec{\beta} = \hat{i} - 2\hat{j} - 4\hat{k}$$ are the position vectors of the points $$A$$ and $$B$$. Then the distance of the point $$-\hat{i} + \hat{j} + \hat{k}$$ from the passing through $$B$$ and perpendicular to $$AB$$ is 
    Solution

    We have,

    $$ \overrightarrow{\alpha }=3\widehat{i}+\widehat{j}+2\widehat{k} $$

    $$ \overrightarrow{\beta }=\widehat{i}-2\widehat{j}-4\widehat{k} $$

    So,

    $$ \overrightarrow{AB}=\overrightarrow{\beta }-\overrightarrow{\alpha } $$

    $$ \overrightarrow{AB}=\left( \widehat{i}-2\widehat{j}-4\widehat{k} \right)-\left( 3\widehat{i}+\widehat{j}+2\widehat{k} \right) $$

    $$ \overrightarrow{AB}=\widehat{i}-2\widehat{j}-4\widehat{k}-3\widehat{i}-\widehat{j}-2\widehat{k} $$

    $$ \overrightarrow{AB}=-2\widehat{i}-3\widehat{j}-6\widehat{k} $$

    Now, equation of plane passing through the point and perpendiular vector is

    So,

    $$ \left( -2\widehat{i}-3\widehat{j}-6\widehat{k} \right).\left( x\widehat{i}+y\widehat{j}+z\widehat{k} \right)=\left( -2\widehat{i}-3\widehat{j}-6\widehat{k} \right).\left( -\widehat{i}+\widehat{j}+\widehat{k} \right) $$

    $$ \Rightarrow 2x+3y+6z=2-3-6 $$

    $$ \Rightarrow 2x+3y+6z=-7 $$

    Hence, this is the answer.
  • Question 10
    1 / -0
    A (1,-1,-1) , B (2,1,-2) and C (-5,2,-6) are the position vectors of the vertices of triangle ABC  The length of the bisector of its internal angle at A is:
    Solution
    $$\dfrac {AB}{AC}=\dfrac {BE}{EC}$$
    $$\dfrac {\sqrt 6}{3\sqrt 6}=\dfrac {BE}{EC}=\dfrac {1}{3}$$
    So point $$E=\left (\dfrac {1}{4}+\dfrac {5}{4},-3\right)$$
    So $$AE=\dfrac {3\sqrt {10}}{4}$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now