Self Studies

Vector Algebra Test - 60

Result Self Studies

Vector Algebra Test - 60
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Given a parallelogram $$ABCD$$. If $$|\vec{AB}=a, |\vec{AD}|=b$$ and $$|vec{AC}|=c$$, then $$|\vec{DB}|.|\vec{AB}|$$ has the
    Solution

  • Question 2
    1 / -0
    Let $$\vec a$$ and $$\vec b$$ be two unit vectors such that $$\left| {\vec a + \vec b} \right| = \sqrt 3$$. If $$\vec c = \vec a + 2\vec b + 3(\vec a \times \vec b)$$, then $$2\left| {\vec c} \right|$$ is equal to:

    Solution
    $$ \left | \vec{a}+\vec{b} \right | = \sqrt{3}$$ [Given]
    $$ \Rightarrow \left | \vec{a}+\vec{b} \right | = \left | \vec{a} \right |^{2}+\left | \vec{b} \right |^{2}+2\vec{a}\vec{b} = 3 $$
    $$ \Rightarrow 2+2cos\theta  = 3 $$ 
    $$[ \therefore \vec{a}$$ $$ \vec{b}$$ are unit vector]
    $$ cos\theta =1/2$$
    $$ \Rightarrow \theta  = \pi /3$$
    $$ \Rightarrow $$ Now, $$ \vec{c}  = \vec{a}+2\vec{b}+3(\vec{a}\times \vec{b})$$
    $$ = \vec{a}+2\vec{b}+3\left | \vec{a} \right |\left | \vec{b} \right |sin\theta \,\hat{n}$$
    $$=\vec{a}+2\vec{b}+\frac{3\sqrt{3}}{2}\hat{n}$$
    $$\Rightarrow \left | \vec{c} \right |^{2}=\left | \vec{a} \right |^{2}+4\left | \vec{b} \right |^{2}+\frac{27}{4}\left | \vec{n} \right |^{2}+$$
    $$4\vec{a}.\vec{b}+2\times 3\sqrt{3}\hat{n}.\vec{b}+3\sqrt{3}\hat{n}.\vec{a}$$
    $$ [\because \vec{n}\perp \vec{b}$$ and $$ \vec{n}\perp \vec{a}]$$
    $$ = 5+\frac{27}{4}+2 = \frac{28+27}{4} = \frac{55}{4}$$
    $$ \Rightarrow \left | \vec{c} \right | = \frac{\sqrt{55}}{a}$$
    $$ \Rightarrow  2\left | \vec{c} \right | = \sqrt{55}$$

  • Question 3
    1 / -0
    Let $$A(\overline { a } ),B(\overline { b } ), C(\overline { c } )$$ be the vertices of the triangle $$ABC$$ and let $$D,E,F$$ be the mid points of the sides $$BC,CA,AB$$ respectively. If $$P$$ divides the median $$AD$$ in the ratio $$2:1$$ then the position vector of $$P$$ is
    Solution
    From section formula,
    $$\vec{P}=\dfrac{2\left(\dfrac{\vec b+\vec c}{2}\right)+\vec a}{2H}=\dfrac{\vec{b}+\vec{c}+\vec{a}}{3}$$
    $$\Rightarrow (C)$$

  • Question 4
    1 / -0
    If $$|\bar {a}-\bar {b}|=|\bar {a}|=|\bar {b}|$$, where $$\bar a$$ and $$\bar b$$ are non zero vecrors then the angle between $$\bar {a}-\bar {b}$$ and $$\bar b$$ is
    Solution

  • Question 5
    1 / -0
    $$ABC$$ is an isosceles triangle right angled at $$A$$. Force of magnitude $$2\sqrt{2},5$$ and $$6$$ act along $$\overline { BC } ,\overline { CA } ,\overline { AB } $$ respectively. The magnitude of their resultant force is
    Solution
    REF.Image.
    $$ AB = AC \Rightarrow \angle B = \angle C$$
    And $$ \angle B+\angle C+90-180$$
    $$ \Rightarrow \angle B = \angle C = 45^{\circ}$$
    Taking components of $$ 2\sqrt{2}$$
    $$ 2\sqrt{2}cos45 = 2\sqrt{2}\times \frac{1}{\sqrt{2}} = 2 $$
    $$ 2\sqrt{2}sin45 = 2\sqrt{2}\times \frac{1}{\sqrt{2}} = 2 $$
    $$ \Rightarrow $$ Resultant =$$ \sqrt{16+9} = 5 N $$
    $$ \Rightarrow (B)$$

  • Question 6
    1 / -0
    The length of the projection of the line segment joining the points $$(5, -1, 4)$$ and $$(4, -1, 3)$$ on the plane , $$ x+ y+ z = 7$$ is : 
    Solution
    Here $$PQ$$ is the projection 
    Also $$PQ=BC$$
    $$AC=\overline { AB }  .\overline { BC } =\left( \hat { i } +\hat { k }  \right) .\left( \dfrac { \hat { i } +\hat { j } +\hat { k }  }{ \sqrt { 3 }  }  \right) $$
    $$=2/\sqrt {3}$$
    Also, $$AB=\sqrt {2}$$
    $$AB=AC^{2}+BC^{2}=2=4/3+BC^{2}$$
    $$BC^{2}=2/3$$
    $$BC=\sqrt {2/3}$$

  • Question 7
    1 / -0
    $$\vec{a},\vec{b},\vec{c},\vec{d}$$ are the position vectors of four coplanar points A,B,C,D respectively. If no three of them are collinear and $$|\vec{a}-\vec{d}|=|\vec{b}-\vec{d}|=|\vec{c}-\vec{d}|$$ then for triangle ABC, D is
  • Question 8
    1 / -0
    If AD, BE and CF are $$\Delta ABC$$, then $$\\ \vec { AD } +\vec { BE } \vec { +CF } $$
    Solution

  • Question 9
    1 / -0
    Let $$\vec{a}=3\hat{i}+2\hat{j}+2\hat{k}, b=\hat{i}+2\hat{j}-2\hat{k}$$. Then a unit vector perpendicular to both $$\vec{a}-\vec{b}$$ and $$\vec{a}+\vec{b}$$ is :
    Solution
    We have,
    $$ \vec { a } =3\hat { i } +2\hat { j } +2\hat { k } ,\, \, \vec { b } =\hat { i } +2\hat { j } -2\hat { k }  \\ \vec { a } +\vec { b } =4\hat { i } +4\hat { j } \, \, \, \, \, \, \hat { a } -\hat { b } =2\hat { i } +4\hat { k }  \\ \vec { d } =\left( { \vec { a } -\vec { b }  } \right) \times \left( { \vec { a } \times \vec { b }  } \right) $$

    Therefore,
    $$=\left| { \begin{array} { *{ 20 }{ c } }i & { \hat { j }  } & { \hat { k }  } \\ 2 & 0 & 4 \\ 4 & 4 & 0 \end{array} } \right| =-16\hat { i } +16\hat { j } +8\hat { k } $$

    Unit vector perpendicular to
    $$ \vec { a } -\vec { b } $$ and $$\vec { a } +\vec { b }$$ is
    $$=\dfrac { { \left( { 16\hat { i } +16\hat { j } +8\hat { k }  } \right)  } }{ { \sqrt { 576 }  } } =\dfrac { { -8\left( { -2\hat { i } +2\hat { j } +\hat { k }  } \right)  } }{ { 24 } }  \\ =\dfrac { { -1 } }{ 3 } \left( { -2\hat { i } +2\hat { j } +\hat { k }  } \right) $$

    Hence, this is the answer.
  • Question 10
    1 / -0
    If $$\vec a,\vec b, \vec c$$ are three coplanar vectors, then $$v\left[ 2\vec { a } +3\vec { b } ,2\vec { b- } 5\vec { c } ,2\vec { c } +3\vec { a }  \right]$$ is 
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now