Self Studies

Vector Algebra Test - 61

Result Self Studies

Vector Algebra Test - 61
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$\vec { x }$$ and $$\vec { y } $$ be unit vectors and $$\left| \vec { z }  \right| =\frac { 2 }{ \sqrt { 7 }  } $$ such that $$\vec { z } +\vec { z } \times \vec { x } =\vec { y } ,$$ then the angle $$\theta $$ between $$\vec { x }$$  and $$\vec { z } $$ can be 
    Solution
    We have,
    $$ \vec { z } +\vec { z } \times \vec { x } =\vec { y }  \\ \left| { \vec { z } +\vec { z } \times \vec { x }  } \right| =\left| { \vec { y }  } \right| =1 \\ { \left| { \vec { z } +\vec { z } \times \vec { x }  } \right| ^{ 2 } }=1 \\ \left( { \vec { z } +\vec { z } \times \vec { x }  } \right) .\left( { \vec { z } +\vec { z } \times \vec { x }  } \right) =1 \\ \Rightarrow { \left| { \vec { z }  } \right| ^{ 2 } }+\left| { \vec { z } \times \vec { x }  } \right| =1$$
    $$ \\ \dfrac { 4 }{ 7 } +\dfrac { 4 }{ 7 } { \sin ^{ 2 }  }\theta =1 \\ { \sin ^{ 2 }  }\theta =\dfrac { 3 }{ 4 }  \\ \sin  \theta =\dfrac { { \sqrt { 3 }  } }{ 2 }  \\ \therefore \theta ={ 60^{ o } }$$

    $$ \\ Hence,\, the\, option\, B\, is\, the\, correct\, answer.$$
  • Question 2
    1 / -0
    Let $$a=(1,-2,3)$$ and $$b=(2,7,4)$$ then
    Solution
    Given, $$a=(1,-2,3)$$ and $$b=(2,7,4)$$.
    Now,
    $$a.b$$
    $$=(1,-2,3).(2,7,4)$$
    $$=2-14+12$$
    $$=0$$.
  • Question 3
    1 / -0
    Let $$\hat {a}$$ and $$\hat {b}$$ two unit vector such that $${ \left( \hat { a } .\hat { b }  \right)  }^{ 2 }-\left| \hat { a } \times \hat { b }  \right| $$ is maximum then $$\left| \hat { a } .\hat { b }  \right|$$ is equal to
    Solution
    We have,
    $$\begin{array}{l} { \left( { \vec { a } .\vec { b }  } \right) ^{ 2 } }-\left| { \vec { a } \times \vec { b }  } \right|  \\ ={ \cos ^{ 2 }  }\theta -\sin  \theta  \\ =1-{ \sin ^{ 2 }  }\theta -\sin  \theta  \\ =1-\left[ { { { \sin   }^{ 2 } }\theta +\sin  \theta +\dfrac { 1 }{ 4 } -\dfrac { 1 }{ 4 }  } \right]  \\ =\dfrac { 5 }{ 4 } -{ \left( { \sin  \theta +\dfrac { 1 }{ 2 }  } \right) ^{ 2 } } \\ Max\, value\, =\dfrac { 5 }{ 4 } -\dfrac { 1 }{ 4 } \, \, at\, \, \sin  \theta =0 \\ =1 \\ \left| { \vec { a } .\vec { b }  } \right| =\left| { \cos  \theta  } \right| =1 \\ Hence,\, the\, option\, A\, is\, correct\, answer. \end{array}$$
  • Question 4
    1 / -0
    The cartesian equation of the plane perpendicular to vector $$3\bar {i}-2\bar {j}-2\bar {k}$$ and passing through the point $$2\bar {i}+3\bar {j}-\bar {k}$$ is
    Solution
    $$\begin{array}{l} \left( { \overrightarrow { r } -\overrightarrow { a }  } \right) .\overrightarrow { N } =0 \\ \Rightarrow \overrightarrow { a } =2\hat { i } +3\hat { j } -\hat { k }  \\ \Rightarrow \overrightarrow { N } =3\hat { i } -2\hat { j } -2\hat { k }  \\ \Rightarrow \left( { \overrightarrow { r } -2\hat { i } -3\hat { j } +\hat { k }  } \right) .\left( { 3\hat { i } -2\hat { j } -2\hat { k }  } \right) =0 \\ \Rightarrow \overrightarrow { r } =x\hat { i } +y\hat { j } +\hat { k }  \\ \Rightarrow \left\{ { \left( { x-2 } \right) i+\left( { y-3 } \right) \hat { j } +\left( { z+1 } \right) \hat { k }  } \right\} .\left( { 3i-2\hat { j } -2\hat { k }  } \right) =0 \\ \Rightarrow 3\left( { x-2 } \right) -2\left( { y-3 } \right) -2\left( { z+1 } \right) =0 \\ \Rightarrow 3x-6-2y+6-2z-2=0 \\ 3x-2y-2z=2\, \, \, \, Ans. \end{array}$$
  • Question 5
    1 / -0
    The position vectors of two vertices and the centroid of a triangle are $$\overset { \rightarrow  }{ i } +\overset { \rightarrow  }{ j } ,\overset { \rightarrow  }{ 2i } -\overset { \rightarrow  }{ j } +\overset { \rightarrow  }{ k } $$ and $$\overset { \rightarrow  }{ k } $$ respectively. The position vector of the third vertex of the triangle is :
    Solution
    Let the third vertex be $$C=x\widehat{i}+y\widehat{j}+z\widehat{k}$$
    and $$A=(1,1,0), B=(2,-1,1), G=(0,0,1)$$
    Now,
    $$(0,0,1)=(\dfrac{1+2+x}{3}, \dfrac{1-1+y}{3}, \dfrac{0+1+z}{3})$$

    Equating this, we get,
    $$x=-3,y=0,z=2$$
    Hence, $$C=-3\widehat{i}+2\widehat{k}$$
  • Question 6
    1 / -0
    If $$u,\ v,\ w$$ are non-coplanar vector and $$p,\ q$$ are real numbers, then the equality $$[3u\ pv\ pw]-[pv\ w\ qw]-[2w\ qv\ qu]=0$$ holds for 
    Solution
    $$\begin{array}{l} Since, \\ \left[ { 3u\, \, pv\, \, pw } \right] -\left[ { pv\, \, wq\, \, qv } \right] =0 \\ \therefore 3{ p^{ 2 } }\left[ { u.\left( { v\times w } \right)  } \right] -pq\, \left[ { v.\left( { w\times u } \right)  } \right]  \\ -2{ q^{ 2 } }\left[ { w.\left( { v\times u } \right)  } \right] =0 \\ \Rightarrow \left( { 3{ p^{ 2 } }-pq+2{ q^{ 2 } } } \right) \left[ { u.\left( { v\times w } \right)  } \right] =0 \\ But\, \, \left[ { u\, \, \, v\, \, \, w } \right] \ne 0 \\ \Rightarrow 3{ p^{ 2 } }-pq+2{ q^{ 2 } }=0 \\ \therefore p=q=0 \end{array}$$
  • Question 7
    1 / -0
    Unit vector perpendicular to the plane of the triangle  $$ABC$$  with position vectors of the vertices  $$A , B , C ,$$  is  $$($$ where  $$\Delta$$  is the area of the triangle  $$A B C$$ ) .
    Solution
    $$\begin{array}{l} Vector\, perpendicular\, to\, the\, plane\, of\, \Delta ABC \\ is\, \, \overrightarrow { AB } \times \, \overrightarrow { AC }  \\ =\left( { \, \overrightarrow { b } -\, \overrightarrow { a }  } \right) \times \left( { \, \overrightarrow { c } -\, \overrightarrow { a }  } \right)  \\ =\, \overrightarrow { b } \times \, \overrightarrow { c } +\, \overrightarrow { a } \times \, \overrightarrow { b } +\, \overrightarrow { c } \times \, \overrightarrow { a }  \\ Area\, of\, triangle\, =\frac { 1 }{ 2 } \left| { \, \overrightarrow { AB } \times \, \overrightarrow { BC }  } \right|  \\ 2\Delta =\left| { \, \overrightarrow { AB } \times \, \overrightarrow { AC }  } \right|  \\ Unit\, vector=\frac { { \left( { \overrightarrow { b } \times \, \overrightarrow { c } +\, \overrightarrow { a } \times \, \overrightarrow { b } +\, \overrightarrow { c } \times \, \overrightarrow { a }  } \right)  } }{ { \left| { \overrightarrow { b } \times \, \overrightarrow { c } +\, \overrightarrow { a } \times \, \overrightarrow { b } +\, \overrightarrow { c } \times \, \overrightarrow { a }  } \right|  } }  \\ =\frac { { \left( { \overrightarrow { b } \times \, \overrightarrow { c } +\, \overrightarrow { a } \times \, \overrightarrow { b } +\, \overrightarrow { c } \times \, \overrightarrow { a }  } \right)  } }{ { 2\Delta  } }  \\ Hence,\, the\, option\, B\, is\, the\, correct\, answer. \end{array}$$
  • Question 8
    1 / -0
    $$\bar { a } ,\bar { b } $$ and $$\bar { c } $$ are unit vector such that $$\bar { a } +\bar { b } -\bar { c } =0$$. then the angle between $$\bar { a } $$ and $$\bar { b } $$ is :-
    Solution
    $$ \bar{a} +\bar{b}-\bar{c} = 0$$
    $$ \bar{a}+\bar{b} = \bar{c}$$
    $$ |\bar{a}+\bar{b}| = |\bar{c}| = 1$$
    $$ a^{2} +b^{2}+2ab cos\theta  =1$$
    $$ 1+1+2cos\theta = 1$$
    $$ 2cos\theta  = -1$$
    $$ cos\theta  = -1/2$$
    So $$ \theta  = 2\pi /3$$

  • Question 9
    1 / -0
    Let $$ABCD$$ is a triangular pyramid with base vectors $$\vec {AB}= 2\bar {i}+3\bar {j}-\bar {k}$$ and $$\vec {AC}=\bar {i}-2\bar {k}$$, If volume of the triangular pyramid is $$\sqrt{150}$$ unit then its height is
  • Question 10
    1 / -0
    If the vectors $$\bar { AB } =3\hat { i } +4\hat { k } $$ and $$\bar { AC } =5\hat { i } -2\hat j+4\hat k$$ are the sides of a triangle ABC, then the length of the median through A is:
    Solution

    We have,

    $$ AB=3\overrightarrow{i}+4\overrightarrow{k} $$

    $$ AC=5\overrightarrow{i}-2\overrightarrow{j}+4\overrightarrow{k} $$

    So, the coordinate of

    $$ B\,is\,\left( 3,0,4 \right) $$

    $$ C\,is\,\left( 5,-2,4 \right) $$

    The mid point of $$BC$$ can be easily found by midpoint formula of two points as

    $$\begin{align}

    $$ D\left( {{x}_{1}},{{y}_{1}},{{z}_{1}} \right)=\left( \dfrac{3+5}{2},\dfrac{0-2}{2},\dfrac{4+4}{2} \right) $$

    $$ D\left( {{x}_{1}},{{y}_{1}},{{z}_{1}} \right)=\left( 5,-2,4 \right) $$

    So, the length of median through A is

    $$ AD=\sqrt{{{\left( 4-0 \right)}^{2}}+{{\left( -1-0 \right)}^{2}}+{{\left( 4-0 \right)}^{2}}} $$

    $$ AD=\sqrt{33} $$

    Hence, this is the answer
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now