$$\begin{array}{l} Vector\, perpendicular\, to\, the\, plane\, of\, \Delta ABC \\ is\, \, \overrightarrow { AB } \times \, \overrightarrow { AC } \\ =\left( { \, \overrightarrow { b } -\, \overrightarrow { a } } \right) \times \left( { \, \overrightarrow { c } -\, \overrightarrow { a } } \right) \\ =\, \overrightarrow { b } \times \, \overrightarrow { c } +\, \overrightarrow { a } \times \, \overrightarrow { b } +\, \overrightarrow { c } \times \, \overrightarrow { a } \\ Area\, of\, triangle\, =\frac { 1 }{ 2 } \left| { \, \overrightarrow { AB } \times \, \overrightarrow { BC } } \right| \\ 2\Delta =\left| { \, \overrightarrow { AB } \times \, \overrightarrow { AC } } \right| \\ Unit\, vector=\frac { { \left( { \overrightarrow { b } \times \, \overrightarrow { c } +\, \overrightarrow { a } \times \, \overrightarrow { b } +\, \overrightarrow { c } \times \, \overrightarrow { a } } \right) } }{ { \left| { \overrightarrow { b } \times \, \overrightarrow { c } +\, \overrightarrow { a } \times \, \overrightarrow { b } +\, \overrightarrow { c } \times \, \overrightarrow { a } } \right| } } \\ =\frac { { \left( { \overrightarrow { b } \times \, \overrightarrow { c } +\, \overrightarrow { a } \times \, \overrightarrow { b } +\, \overrightarrow { c } \times \, \overrightarrow { a } } \right) } }{ { 2\Delta } } \\ Hence,\, the\, option\, B\, is\, the\, correct\, answer. \end{array}$$