Self Studies

Vector Algebra Test - 63

Result Self Studies

Vector Algebra Test - 63
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$\vec { x } $$ is a vector in the direction of $$(2,-2,1)$$ of magnitude $$6$$ and $$\vec { y } $$ is a vector in the direction of $$(1,1,-1)$$ of magnitude $$\sqrt{3}$$, then $$\left| \vec { x } +2\vec { y }  \right| =...$$
    Solution
    they given x direction
    we need to find unit vector in that direction and multiply with the magnitude of x
    they given y direction
    we need to find unit vector in that direction and multiply with the magnitude of y
    $$\vec { x } =\cfrac { 6\left( 2\hat { i } -2\hat { j } +\hat { k }  \right)  }{ 3 }$$
    $$ ,\vec { y } =\cfrac { \sqrt { 3 } \left( \hat { i } +\hat { j } -\hat { k }  \right)  }{ \sqrt { 3 }  } $$
    so $$\left| \vec { x } +2\vec { y }  \right| $$
    $$=\left| 6\hat { i } -2\hat { j }  \right| =\sqrt { 40 } $$
    $$=2\sqrt { 10 } $$
  • Question 2
    1 / -0
    The position vector of a point P is $$\overrightarrow r=x \overrightarrow i + y \overrightarrow j+x \overrightarrow k$$, Where $$x,y,z,\epsilon N$$ and $$\overrightarrow a= \overrightarrow i+ \overrightarrow j+\overrightarrow k$$. If $$\overrightarrow r. \overrightarrow a=10$$, then the number of possible positions of P is ___________.
    Solution
    The number of positive integral solution of the equation $$x_1+x_2+x_3+...x_r=n$$ is $$^{n-1}C_{r-1}$$
    We have $$\vec{r}=x\hat{i}+y\hat{j}+z\hat{k}$$
    Also,$$\vec{r}.\vec{a}=10$$
    $$\Rightarrow\,x+y+z=10$$
    Thus number of positive integral solution is $$= ^{10-1}C_{3-1}= ^{9}C_{2}=\dfrac{9!}{7!2!}=\dfrac{9\times 8}{2}=36$$
    Option$$(d)$$ is correct.
  • Question 3
    1 / -0
    If the position vector $$\vec{a}$$ of point $$(12, n) $$ is such that $$\left | \vec{a} \right | = 13$$, then find the value (s) of $$n$$.
    Solution

  • Question 4
    1 / -0
    If a unit vector $$ \vec{a} $$ makes an angle $$ \dfrac{\pi }{3} $$ with $$ \hat{i},\dfrac{\pi }{4} $$ with $$ \hat{j} $$ and an accute angle $$ \theta $$ with $$ \hat{k}, $$ then find $$ \theta $$ and hence, the components of $$ \vec{a} $$.

    Solution
    The direction cosines of vector $$ \vec{a} $$ are $$ l = cos \dfrac{\pi }{3} = \dfrac{1}{2},m = cos \dfrac{\pi }{4} = \dfrac{1}{\sqrt{2}} $$ and $$ n = cos \,\theta $$.
    $$ \therefore l^{2}+m^{2}+n = 1 \Rightarrow \dfrac{1}{4}+\dfrac{1}{2}+n^{2} = 1 \Rightarrow n^{2} = \dfrac{1}{4} \Rightarrow n = \dfrac{1}{2}\Rightarrow cos\,\theta = \dfrac{1}{2}\Rightarrow \theta = \dfrac{\pi }{3} $$ 
    Since $$ \vec{a} $$ is a unit vector.
    $$ \therefore \vec{a} = l\hat{i}+m\hat{j}+n\hat{k} $$
    $$ \Rightarrow \vec{a} = \dfrac{1}{2}\hat{i}+\dfrac{1}{\sqrt{2}}\hat{j}+\dfrac{1}{2}\hat{k} $$
    Hence, components of $$ \vec{a} $$ are $$ \dfrac{1}{2}\hat{i},\dfrac{1}{\sqrt{2}}\hat{j},\dfrac{1}{2}\hat{k}. $$ 
  • Question 5
    1 / -0
    What is the scalar projection of 
    $$\vec{a}=\hat{i}+2\hat{j}+\hat{k}$$ on $$\vec{b}=4\hat{i}+4\hat{j}+7\hat{k}
    $$ ?
    Solution
    Formula,

    scalar projection of a on b  $$=\dfrac{\vec{a}\cdot \vec{b}}{|\vec{b}|}$$

    Given,

    $$a=i+2j+k,b=4i+4j+7k$$

    $$=\dfrac{(i+2i+k)\cdot (4i+4j+7k)}{|4i-4j+7k|}$$

    $$=\dfrac{4+8+7}{\sqrt{4^2+(4)^2+7^2}}$$

    $$=\dfrac{19}{9}$$

  • Question 6
    1 / -0
    The adjacent sides of a parallelogram are represented by the vectors $$ \vec{a} = \hat{i}+\hat{j}+\hat{k} $$ and $$ \vec{b} = 2\hat{i}+\hat{j}+2\hat{k}.$$ Find unit vectors parallel to the diagonals of the parallelogram.


    Solution
    Gven $$\vec a=\hat i+\hat j+\hat k$$  and  $$\vec b=2\hat i+\hat j+2\hat k$$

    From the figure 

    $$\vec c=\vec a+\vec b=\hat i+\hat j+\hat k+2\hat i+\hat j+2\hat k=3\hat i+2\hat j+3\hat k$$

    and $$\vec a+\vec d=\vec b$$

    $$\Rightarrow\vec d=\vec b-\vec a=2\hat i+\hat j+2\hat k-(\hat i+\hat j+\hat k)=\hat i+\hat k$$

    The unit vector parallel to $$\vec c$$ is $$\dfrac{\vec c}{|\vec c|}=\dfrac{3\vec i+2\vec j+3\vec k}{\sqrt{3^2+2^2+3^2}}=\dfrac{1}{\sqrt{22}}(3\vec i+2\vec j+3\vec k)$$

    The unit vector parallel to $$\vec d$$ is $$\dfrac{\vec d}{|\vec d|}=\dfrac{\vec i+\vec k}{\sqrt{(1)^2+(1)^2}}=\dfrac{1}{\sqrt{2}}(\vec i+\vec k)$$

  • Question 7
    1 / -0
    Express $$ \vec{AB}$$ in terms of unit vectors $$ \hat{i} $$ and $$\hat{j}$$, when the points are:
    A(4,-1), B(1,3)
    Find $$ \left | \vec{AB} \right |$$ in each case.
    Solution
    $$A(4, -1)$$ $$B(1, 3)$$
    $$\vec{OA}=4\hat{i}-\hat{j}$$; $$\vec{OB}=\hat{i}+3\hat{j}$$
    $$\vec{AD}=\vec{OB}-\vec{OA}=(\hat{i}+3\hat{j})-(4\hat{i}-\hat{j})=-3\hat{i}+4\hat{j}$$
    $$|\vec{AB}|=\sqrt{(-3)^2+4^2}=5$$.
  • Question 8
    1 / -0
    The unit vector normal to the plane containing $$\vec{a}=(\hat{i}-\hat{j}-\hat{k})$$ and $$\vec{b}=(\hat{i}+\hat{j}+\hat{k})$$ is?
    Solution

  • Question 9
    1 / -0
    If $$\bar{a}$$ and $$\bar{b} = 3 \hat{i} + 6 \hat{j} + 6 \hat{k}$$ are collinear and $$\bar{a} . \bar{b} = 27$$, then $$\bar{a}$$ is equal to 
    Solution
    Since, $$\vec { a }$$ and $$\vec { b }$$ are collinear vector. Therefore,
    $$\vec { a }=\lambda\vec { b }$$............(i)
    $$\because \vec { a }.\vec { b }=27$$
    $$\Rightarrow |\vec { a }||\vec { b }|\cos 0^0=27$$
    $$\Rightarrow |\vec { b }|.\sqrt{9+36+39}=27$$
    $$\Rightarrow |\vec {a  }|=\dfrac{27}{9}=3$$
    By Equation (i),
    $$\vec {  }=\lambda \vec { b }$$
    $$\Rightarrow |\vec {  a}|=|\lambda||\vec { b }|$$
    $$3=|\lambda|.9$$
    $$\Rightarrow |\lambda|=\pm\dfrac{1}{3}$$
    $$\therefore \vec { a }=\pm \dfrac{1}{3}(3\hat{i}+6\hat{j}+6\hat{k})$$
    $$\vec {  }=\pm (\hat{i}+2\hat{j}+2\hat{k})$$
  • Question 10
    1 / -0
    Let $$O$$ be the circumcentre, $$G$$ be the centroid and $$O$$ be the orthocentre of a $$\triangle ABC$$. Three vectors are taken through $$O$$ and are represented by $$\vec{a}=\vec{OA}, \vec{b}=\vec{OB}$$ and $$\vec{c}=\vec{OC}$$ then $$\vec{a}+\vec{b}+\vec{c}$$ is
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now