Self Studies

Vector Algebra ...

TIME LEFT -
  • Question 1
    1 / -0

    If $$a, b, c$$ are vectors such that $$a+b+c = 0$$ and $$|a| = 7, |b| = 5, |c| = 3$$, then the angle between $$c$$ and $$b$$ is

  • Question 2
    1 / -0

    $$(\vec r. \hat i)(\vec r \times \hat i)+ (\vec r. \hat j)(\vec r \times \hat j) +(\vec r. \hat k)(\vec r \times \hat k)$$ is equal to

  • Question 3
    1 / -0

    If $$(\vec a\times \vec b)^2 +(\vec a. \vec b)^2 =144$$ and $$|\vec a|=4$$, then $$|\vec b|=$$

  • Question 4
    1 / -0

    $$p\hat{i}+3\hat{j}+4\hat{k}$$ and $$\sqrt{q}\hat{i}+4\hat{k}$$ are two vectors, where $$p,q>0$$ are two scalars, then the length of the vectors is equal to

  • Question 5
    1 / -0

    Given that $$\vec a, \vec b, \vec p, \vec q$$ are four vectors such that $$\vec a + \vec b = \mu \vec p, \vec b \cdot \vec q = 0$$ and $$(\vec b)^2 = 1,$$ where $$\mu$$ is scalar. Then $$\mid (\vec a \cdot \vec q) \vec p - (\vec p \cdot \vec q)\vec a \mid$$ is equal to

  • Question 6
    1 / -0

    Directions For Questions

    If $$ \vec{x} \times \vec{y}=\vec{a}, \vec{y} \times \vec{z}=\vec{b}, \vec{x} \cdot \vec{b}=\gamma, \vec{x} \cdot \vec{y}=1 $$ and $$ \vec{y} \cdot \vec{z}=1 $$

    ...view full instructions

    Vector $$ \vec{x} $$ is

  • Question 7
    1 / -0

    Directions For Questions

    If $$ \vec{x} \times \vec{y}=\vec{a}, \vec{y} \times \vec{z}=\vec{b}, \vec{x} \cdot \vec{b}=\gamma, \vec{x} \cdot \vec{y}=1 $$ and $$ \vec{y} \cdot \vec{z}=1 $$

    ...view full instructions

    Vector $$ \vec{z} $$ is

  • Question 8
    1 / -0

    Directions For Questions

    If $$ \vec{x} \times \vec{y}=\vec{a}, \vec{y} \times \vec{z}=\vec{b}, \vec{x} \cdot \vec{b}=\gamma, \vec{x} \cdot \vec{y}=1 $$ and $$ \vec{y} \cdot \vec{z}=1 $$

    ...view full instructions

    Vector $$ \vec{y} $$ is

  • Question 9
    1 / -0

    If $$\vec r$$ and $$\vec s$$ are non-zero constant vectors and the scalar $$b$$ is chosen such that $$\mid \vec r + b \vec s \mid$$ is minimum, then the value of $$\mid b \vec s \mid^2 + \mid \vec r + b \vec s \mid^2$$ is equal to

  • Question 10
    1 / -0

    Directions For Questions

    Given two orthogonal vectors $$ \vec{A} $$ and $$ \vec{B} $$ each of length unity. Let $$ \vec{P} $$ be the vector satisfying the equation $$ \vec{P} \times \vec{B}=\vec{A}-\vec{P} \cdot $$ Then

    ...view full instructions

    $$ (\vec{P} \times \vec{B}) \times \vec{B} $$ is equal to

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now