Self Studies

Vector Algebra Test - 65

Result Self Studies

Vector Algebra Test - 65
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Let $$\hat{a} \space and \space \hat{b}$$ be mutually perpendicular unit vectors. Then for any arbitrary $$\vec{r}$$.
  • Question 2
    1 / -0
    The vector with initial point $$P(2,-3,5)$$ and terminal point $$Q(3,-4,7)$$ is
    Solution
    $$(A)$$ is the correct answer.
    Required vector $$=|\vec{AB}|=(3-2) \hat i+(-4+3)\hat j+(7-5)\hat k$$
    $$=\hat i-\hat j+2\hat k$$
  • Question 3
    1 / -0
    The position vector of the point which divides the join of points with position vectors $$\vec a +\vec b$$ and $$2\vec a-\vec b$$ in the ratio $$1:2$$ is
    Solution
    $$(D)$$ is the correct answer. Applying section formula, the position vector of the required point is $$\dfrac {2(\vec a+\vec b)+1(2\vec a-\vec b)}{2+1}=\dfrac {4\vec a+\vec b}{3}$$
    Since, the position vector of a point $$R$$ divides the line segment joining the points $$P$$ and $$Q$$, whose position vectors are $$\vec p$$ and $$\vec q$$ in the ration $$m:n$$  internally, is given by $$\dfrac{m\vec q +n\vec p}{m+n}$$
  • Question 4
    1 / -0
    Let $$ \vec{u}, \vec{v} $$ and $$ \vec{w} $$ be vectors such that $$ \vec{u}+\vec{v}+\vec{w}=0 . $$ If $$ |\vec{u}|=3,|\vec{v}|=4 $$ and $$ |\vec{w}|=5, $$ then $$ \vec{u} \cdot \vec{v}+\vec{v} \cdot \vec{w}+\vec{w} \cdot \vec{u} $$ is
    Solution

  • Question 5
    1 / -0
    Line $$\overrightarrow{r} = \overrightarrow{a} + \lambda \overrightarrow{b}$$ will not meet the plane $$\overrightarrow{r} \cdot \overrightarrow{n} = q$$, if 
    Solution
    Given line is $$\overrightarrow{r} = \overrightarrow{a} + \lambda \overrightarrow{b}$$ 
    Substitute it in plane equation $$\overrightarrow{r} \cdot \overrightarrow{n} = q$$,
    $$( \overrightarrow{a} + \lambda \overrightarrow{b}).\overrightarrow{n}=q$$ 
    $$( \overrightarrow{a}. \overrightarrow{n}+ \lambda \overrightarrow{b}.\overrightarrow{n})=q$$ 

     We must have $$\overrightarrow{b} \cdot \overrightarrow{n} = 0$$ 
    and   $$\overrightarrow{a} \cdot \overrightarrow{n} \neq q$$ (as point $$\overrightarrow{a} $$ on the line should not lie on the plane.
  • Question 6
    1 / -0
    If $$\vec \alpha | =4$$ and $$ -3 \le \lambda \le 2$$, then the range of $$ | \lambda \vec \alpha |$$ is 
    Solution
    We have, $$| \vec \alpha | =4$$ and $$-3 \le \lambda \le 2$$

    $$\therefore | \lambda \vec a| =|-3| 4=12$$, at $$\lambda =-3$$

    $$| \lambda \vec a| =|0|4=0$$, at $$\lambda =0$$

    And $$| \lambda \vec \alpha | |2| 4=8$$, at $$\lambda =2$$

    So, the range of $$| \lambda \vec \alpha |$$ is $$[0, 12]$$.

    Alternate Method
    Since, $$-3 \le \lambda \le 2$$

    $$0 \le || \lambda | \le 3$$

    $$\Rightarrow 0 \le 4 | \lambda | \le 12$$

    $$| \lambda \vec a| \in [ 0, 12]$$
  • Question 7
    1 / -0
    If $$\vec a, \vec b, \vec c$$ are unit vector such that $$\vec a +\vec b +\vec c=\vec 0$$, then the value of $$\vec a \vec b+\vec b. \vec c+\vec c. \vec a$$ is 
    Solution
    We have, $$\vec a+ \vec b+ \vec c= \vec 0$$, and $$\vec a^2=1, \vec b^2 =1, \vec c^2 =1 | \vec a|=1, | \vec b|=1, | \vec c| =1$$

    $$\because ( \vec a+ \vec b +\vec c)( \vec a+ \vec b +\vec c)=0$$

    $$\Rightarrow \vec a^2 + \vec a. \vec b + \vec a. \vec c+ \vec +\vec b . \vec a + \vec b^2 + \vec b. \vec c+ \vec c. \vec a+ \vec c. \vec b +\vec c^2=0$$

    $$\Rightarrow \vec a^2 +\vec b^2.+\vec c^2 +2( \vec a. \vec b+ \vec b. \vec c+ \vec c. \vec a)=0$$              $$[ \because \vec a. \vec b =\vec b. \vec a, \vec b. \vec c= \vec c. \vec b$$ and $$\vec c. \vec a= \vec a. \vec c]$$

    $$\Rightarrow 1+1+1+2( \vec a. \vec b + \vec b. \vec c + \vec c. \vec a)=0$$

    $$\Rightarrow \vec a. \vec b+ \vec b. \vec c+ \vec c. \vec a=-\dfrac 32$$
  • Question 8
    1 / -0
    The vector having initial and terminal points as $$(2, 5, 0)$$ and $$(-3, 7, 4)$$, respectively is 
    Solution
    Required vector $$=|\vec{AB}|=(-3-2) \hat i+(7-5)\hat j+(4-0)\hat k$$
    $$=-5\hat i+2\hat j=4\hat k$$
  • Question 9
    1 / -0
    The projection of vector $$\vec a=2\hat i-\hat j+\hat k$$ along $$\vec b=\hat i+2\hat j+2\hat k$$ is
    Solution
    $$(A)$$ is the correct answer. Projection of a vector $$\vec a$$ on $$\vec b$$ is
    $$\dfrac {\vec a \vec b}{|b|}=\dfrac {(2\hat i-\hat j+\hat k)(\hat i+2\hat j+2\hat k)}{\sqrt {1+4+4}}=\dfrac 23$$
  • Question 10
    1 / -0
    If $$\vec a, \vec b, \vec c$$ are three vectors such that $$ \vec a +\vec b+ \vec c=\vec 0$$ and $$ | \vec a| =2, | \vec b|=3, | \vec c| =5$$, then value of $$\vec a. \vec b+ \vec b. \vec c+ \vec c. \vec a$$ is 
    Solution
    Here, $$ \vec a+ \vec b+ \vec c=\vec 0$$ and $$\vec a^2 =4, \vec b^2 =9, \vec c^2=25$$

    $$\therefore ( \vec a+ \vec b+ \vec c). ( \vec a+ \vec b+\vec c)=\vec 0$$

    $$\Rightarrow \vec a^2 +\vec a. \vec b+ \vec a. \vec c+\vec b. \vec a+\vec b^2 + \vec b. \vec c+ \vec c. \vec a+ \vec c. \vec b+ \vec c^2=\vec 0$$

    $$\Rightarrow \vec a^2+ \vec b^2+\vec c^2+2( \vec a. \vec b+ \vec b. \vec c+ \vec c. \vec a)=0$$     $$[ \because \vec a. \vec b=\vec b. \vec a]$$

    $$\Rightarrow 4+9+25+2( \vec a. \vec b+ \vec b. \vec c +\vec c. \vec a)=0$$

    $$\Rightarrow \vec a. \vec b+ \vec b. \vec c+ \vec c. \vec a=\dfrac{-38}{2}=-19$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now