Self Studies

Vector Algebra Test - 66

Result Self Studies

Vector Algebra Test - 66
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The position vector of the point which divides the join of points $$2 \vec a -3\vec b$$ and $$\vec a+\vec b$$ in the ratio $$3:1$$ is 
    Solution
    Let the position vector of the point $$R$$ divides the join of points $$2\vec a-3\vec b$$ and $$\vec a+\vec b$$.
    $$\therefore $$ Position vector $$R=\dfrac{3( \vec a+\vec b)+1( 2\vec a-3\vec b)}{3+1}$$
    Since, the position vector of a point $$R$$ divides the line segment joining the points $$P$$ and $$Q$$, whose position vectors are $$\vec p$$ and $$\vec q$$ in the ration $$m:n$$  internally, is given by $$\dfrac{m\vec q +n\vec p}{m+n}$$
    $$\therefore R=\dfrac{5\vec a}{4}$$
  • Question 2
    1 / -0
    The value of $$\hat { i }. (\hat { j } \times \hat { k }) + \hat { j }. (\hat { 
    i } \times \hat { k })+\hat { k }. (\hat { i } \times \hat { j })$$ is
    Solution

  • Question 3
    1 / -0
    The value of $$ \hat {i} .( \hat {j} \times \hat {k}) + \hat {j} . ( \hat {i} \times  \hat {k})  + \hat {k} .( \hat {i} \times  \hat {j}) $$
    Solution
    $$ \overrightarrow {i} . ( \overrightarrow { j} \times \overrightarrow {k} ) + \overrightarrow {j} .( \overrightarrow {i} \times \overrightarrow {k}) + \overrightarrow {k} ( \overrightarrow {i} \times \overrightarrow {j}) $$
    $$ \overrightarrow {i} . \overrightarrow {i'} + \overrightarrow {j} .( - \overrightarrow {j}) + \overrightarrow {k} . \overrightarrow {k} = | i|^2 - | j|^2 + |k|^2 $$
    $$ = 1 - 1 +1 = +1 $$
    hence answer is ( C). 
  • Question 4
    1 / -0
    If $$ \overrightarrow {a} $$ is non zero vector of magnitude 'a ' and $$ \lambda $$ a nonzero scalar then $$ \lambda \overrightarrow {a} $$ is unit vector
    Solution
    $$|\lambda\bar{a}| \space is \space a \space unit \space vector$$
    $$So \space its \space magnitude \space is \space 1$$
    $$ |\lambda \bar{a}|=|\lambda||\bar{a}|=|\lambda|a=1 $$
    $$ \Rightarrow a=\frac{1}{|\lambda|} $$
    $$Hence\space answer\space is\space (D)$$
  • Question 5
    1 / -0
    Three vectors of magnitudes $$a,\ 2a,3a$$ meeting a point and three directions are along the diagonals of three adjacent faces of a cube. The magnitude of their resultant is
    Solution
    Solution:
    Let the vectors of magnitudes $$a,2a,3a$$ act along $$OP,OQ,OR$$ respectively.Then vectors are $$OP,OQ,OR$$ are 
    $$a\left(\cfrac{\vec i+\vec j}{\sqrt2}\right),$$$$2a\left(\cfrac{\vec j+\vec k}{\sqrt2}\right),$$$$3a\left(\cfrac{\vec k+\vec i}{\sqrt2}\right)$$ respectively.
    Their resultant say $$R$$ is given by
    $$\vec R =$$$$a\left(\cfrac{\vec i+\vec j}{\sqrt2}\right)+$$$$2a\left(\cfrac{\vec j+\vec k}{\sqrt2}\right)+$$$$3a\left(\cfrac{\vec k+\vec i}{\sqrt2}\right)$$
    $$=\cfrac{a}{\sqrt2}(4\vec i+3\vec j+5\vec k)$$
    $$\therefore |\vec R|=\sqrt{\cfrac{a^2}2(16+9+25)}=5a$$
    Hence, B is the correct answer.


  • Question 6
    1 / -0
    If $$\vec {x}$$ is a vector whose initial point divides the line joining $$5\hat{i}$$, and $$ 5\hat{j}$$ in the ratio $$\lambda :1$$ and  the terminal point is the origin. Also given $$\left | \vec {x} \right |\leq \sqrt{37}$$, then $$\lambda $$ belongs to
    Solution
    From the condition given for $$\vec x$$ we have 

    $$\displaystyle \frac{|\lambda(5j)+5i|}{\lambda+1}\leq\sqrt{37}$$

    $$25(\lambda^{2}+1)\leq 37(\lambda+1)^{2}$$

    $$\Rightarrow(6\lambda+1)(\lambda+6)\geq 0$$

    $$\displaystyle \lambda\in(-\infty, -6)\mathrm\cup (-\frac{1}{6}, \infty)$$
  • Question 7
    1 / -0
    A scooterist follows a track on a ground that turns to his left by an angle 60$$^{0}$$ after every 400 m. Starting from the given point displacement of the scooterist at the third turn and eighth turn are :
    Solution
    Let $$\bar { { x }_{ 1 } } ,\bar { { x }_{ 2 } } ,\bar { { x }_{ 3 } } ,.....\bar { { x }_{ 8 } } $$ be the positions of scooterist after $${ 1 }^{ st },{ 2 }^{ nd },{ 3 }^{ rd }......,{ 8 }^{ th }$$ turn respectively.
    Thus its motion can be visualized as hexagon inscribed in circle of radius $$400m$$.
    Let $$\bar { { x }_{ 0 } } $$ be its initial position.
    $$\therefore $$ After $${ 3 }^{ rd }$$ turn
    $${ x }_{ 3 } -{ x }_{ 0 }=800m$$
    After $${ 8 }^{ th }$$ turn
    $${ x }_{ 0 } - { x }_{ 2 } = 800\cos30^{0} = 400\sqrt 3m$$

  • Question 8
    1 / -0
    $$\mathrm{l}\mathrm{n}$$ a triangle O$$\mathrm{A}\mathrm{B},\ \mathrm{E}$$ is the mid-point of $$\mathrm{O}\mathrm{B}$$ and $$\mathrm{D}$$ is a point on $$\mathrm{A}\mathrm{B}$$ such that $$\mathrm{A}\mathrm{D}$$: $$\mathrm{D}\mathrm{B}=2: 1$$. lf $$\mathrm{O}\mathrm{D}$$ and $$\mathrm{A}\mathrm{E}$$ interesect at $$\mathrm{P}$$, then the ratio $$\displaystyle\frac{OP}{PD}$$ is
    Solution
    $$\Delta OAB$$ let  $$O=(0,0),A=(x_1,y_1),B=(x_2,y_2)$$
    Then,  $$E=(\dfrac{x_2}{2},\dfrac{y_2}{2})$$,$$D=(\dfrac{2x_2+x_1}{3},\dfrac{2y_2+y_1}{3})$$
    Equation of OD is: $$y-0=\dfrac{2y_2+y_1}{2x_2+x_1}(x-0)$$
                                         $$y=\dfrac{2y_2+y_1}{2x_2+x_1}x$$........(1)
    Equation of AE is:   $$(y-y_1)=\dfrac{y_2-2y_1}{x_2-2x_1}(x-x_1)$$
                  From eq(1)
                              $$(\dfrac{2y_2+y_1}{2x_2+x_1})(x)-y_1=\dfrac{y_2-2y_1}{x_2-2x_1}(x-x_1)$$
       so $$ x=\dfrac{(2x_2+x_1)}{5}  =\dfrac{3(\dfrac{2x_2+x_1}{3})+2(0)}{(3+2)}$$
    so ratio $$OP:PD=3:2$$
  • Question 9
    1 / -0
    In a quadrilateral $$PQRS,\ \vec{PQ}=\vec{a}, \vec{QR}=\vec{b}, \vec{SP}=\vec{a} - \vec{b}.\ M$$ is the mid-point of $$QR$$ and $$X$$ is a point on $$SM$$ such that $$\vec{SX}=\dfrac{4}{5}\vec{SM}$$, then $$\vec{PX}$$ is
    Solution
    Choose $$P$$ as the origin of reference. 
    $$\vec{PR}=\vec{a}+\vec{b}$$,
    $$\vec{PS}=-(\vec{a}-\vec{b})=\vec{b}-\vec{a}$$

    $$\vec{PM}=\vec{a}+\dfrac{\vec{b}}{2}$$
    Given : 
    $$\vec{SX}=\dfrac{4}{5}\vec{SM}$$
    $$\vec{PX}-(\vec{b}-\vec{a})=\dfrac{4}{5}\left \{ \vec{a} +\dfrac{\vec{b}}{2}-(\vec{b}-\vec{a})\right \}$$
    $$\Rightarrow \vec{PX}=\dfrac{3}{5}(\vec{a}+\vec{b})$$
    $$=\dfrac{3}{5}\vec{PR}$$ 

    Hence, option $$B.$$

  • Question 10
    1 / -0
    The position vectors of $$A$$ and $$B$$ are $$2\hat{i}+2\hat{j}+\hat{k}$$ and $$2\hat{i}+4\hat{j}+4\hat{k}.$$ The length of the internal bisector of $$\angle BOA$$ of the triangle $$AOB$$ is
    Solution
    Here $$OA=3,OB=6$$
    $$\therefore$$ Internal bisector $$OD$$ divides $$AB$$ in the ratio $$1:2$$
    $$\Rightarrow$$ Position vector of $$D$$ is $$\displaystyle \left( 2,\frac { 8 }{ 3 } ,2 \right) $$

    $$\displaystyle \therefore \left| OD \right| =\sqrt { 4+\dfrac { 64 }{ 9 } +4 } =\sqrt { \dfrac { 136 }{ 9 }  } $$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now