Let the position vectors of $$A, B, C$$ and $$D$$ be $$\vec{a}, \vec{b}, \vec{c}$$ and $$\vec{d}$$, respectively.
Then, $$OA : CB = 2 : 1$$
$$\Rightarrow \vec{OA} = 2 \vec{CB}$$
$$\Rightarrow \vec{a} = 2 (\vec{b} - \vec{c})$$ ....$$(i)$$
and $$OD : AB = 1 : 3$$
$$3\vec{OD} = \vec{AB}$$
$$\Rightarrow 3\vec{d} = (\vec{b} - \vec{a}) = \vec{b} - 2 (\vec{b} - \vec{c})$$ [Using $$(i)$$]
$$= -\vec{b}+ 2\vec{c}$$ .....$$(ii)$$
Let $$OX : XC = \lambda : 1$$ and $$AX : XD =\mu : 1$$
Now,
$$X$$ divides $$OC$$ in the ratio $$\lambda : 1$$.
Therefore,
P.V of $$X = \displaystyle \frac{\lambda \vec{c}}{\lambda + 1}$$ ....$$(iii)$$
$$X$$ also divides $$AD$$ in the ratio $$\mu : 1$$.
Therefore,
P.V. of $$\displaystyle X = \dfrac{\mu \vec{d} + \vec{a}}{\mu + 1}$$ ...$$(iv)$$
From $$(iii)$$ and $$(iv)$$, we get
$$\displaystyle \dfrac{\lambda \vec{c}}{\lambda + 1} = \dfrac{\mu \vec{d} + \vec{a}}{\mu + 1}$$
or $$\displaystyle \left ( \frac{\lambda}{\lambda + 1} \right ) \vec{c} = \left ( \frac{\mu}{\mu + 1} \right )\vec{d} + \left ( \frac{1}{\mu + 1} \right ) \vec{a}$$
or $$\displaystyle \left (\dfrac{\lambda}{\lambda + 1} \right ) \vec{c} = \left ( \dfrac{\mu}{\mu + 1} \right ) \left ( \dfrac{-\vec{b} + 2 \vec{c}}{3} \right ) + \left ( \dfrac{1}{\mu + 1} \right ) 2 \left ( \vec{b} - \vec{c} \right )$$ ....(using $$(i)$$ and $$(ii)$$)
or $$\displaystyle \left ( \frac{\lambda}{\lambda + 1} \right ) \vec{c}= \left ( \frac{6 - \mu}{3 (\mu + 1)} \right ) \vec{b} + \left ( \frac{2 \mu}{3 (\mu + 1)} - \frac{2}{\mu + 1} \right ) \vec{c}$$
or $$\displaystyle \left ( \dfrac{\lambda}{\lambda + 1} \right ) \vec{c} = \left ( \dfrac{6 - \mu}{3 (\mu + 1)} \right ) \vec{b} + \left ( \dfrac{2\mu - 6}{3 (\mu + 1)} \right ) \vec{c}$$
or $$\displaystyle \left ( \frac{6 - \mu}{3 (\mu + 1)} \right )\vec{b} + \left ( \frac{2 \mu - 6}{3 (\mu + 1)} - \frac{\lambda}{\lambda + 1} \right ) \vec{c} = \vec{0}$$
or $$\displaystyle \dfrac{6 - \mu}{3 (\mu + 1)} = 0$$ and $$\displaystyle \dfrac{2 \mu - 6}{3 (\mu + 1)} - \dfrac{\lambda}{\lambda + 1} = 0$$
(as $$\vec{b}$$ and $$\vec{c}$$ are non-collinear)
or $$\displaystyle \mu = 6, \lambda = \dfrac{2}{5}$$
Hence, $$ OX : XC = 2 : 5$$