Self Studies

Vector Algebra Test - 67

Result Self Studies

Vector Algebra Test - 67
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$ABCD$$ is a quadrilateral, $$E$$ is the point of intersection of the line joining the midpoints of the opposite sides. If $$O$$ is any point and $$\vec{OA} + \vec{OB} + \vec{OC} + \vec{OD} = \vec{x OE},$$ then $$x$$ is equal to
    Solution
    Let $$\vec{OA} = \vec{a}, \vec{OB} = \vec{b}, \vec{OC} = \vec{c}$$ and $$\vec{OD} = \vec{d}$$.

    Therefore,
    $$\vec{OA} + \vec{OB} + \vec{OC} + \vec{OD} = \vec{a} + \vec{b} + \vec{c} + \vec{d}$$.
    The midpoint $$P$$ of $$AB$$, is $$\displaystyle \dfrac{\vec{a} + \vec{b}}{2}$$.
    The position vector of the midpoint $$Q$$ of $${CD}$$,  is $$\displaystyle \dfrac{\vec{c} + \vec{d}}{2}$$.

    Therefore, the position vector of the midpoint of $${PQ}  $$ is $$\displaystyle \dfrac{\vec{a} + \vec{b} + \vec{c} + \vec{d}}{4}$$.

    Similarly, the position vector of the midpoint of $$RS$$ is $$\displaystyle \dfrac{\vec{a} + \vec{b} + \vec{c} + \vec{d}}{4}$$, i.e., $$\vec{OE} =\displaystyle \dfrac{\vec{a} + \vec{b} + \vec{c} + \vec{d}}{4} \Rightarrow x = 4$$

    Hence, option '$$D$$' is correct.

  • Question 2
    1 / -0
    If $$\overrightarrow{b}$$ is a vector whose initial point divides the join of $$5\widehat{i}$$ and $$5\widehat{j}$$ in the ratio $$k : 1$$  and whose terminal point is the origin and $$|\vec b| \leq \sqrt{37}$$, then $$k$$ lies in the interval
    Solution
    The point that divides 5$$\widehat{i}$$ and 5$$\widehat{j}$$ in the ratio of  $$k : 1$$ is
    $$\displaystyle \dfrac{(5 \widehat{j}) k + (5\widehat{i})1}{k + 1}$$
    $$\therefore \displaystyle \vec b = \frac{5 \widehat{i} + 5 k \widehat{j}}{k + 1}$$

    Also, $$|\vec b| \leq \sqrt{37}$$
    $$\Rightarrow \displaystyle \dfrac{1}{k+1} \sqrt{25 + 25 k^2} \leq \sqrt{37}$$
    or $$5\sqrt{1 + k^2} \leq \sqrt{37} (k + 1)$$

    Squaring both sides, we get
    $$25 (1 + k^2) \leq 37 (k^2 + 2k +1)$$

    or $$6k^2 + 37k + 6 \geq 0$$ or $$(6k + 1) (k + 6) \geq 0$$

    $$k  \in (-\infty, - 6] \cup \left [ - \dfrac{1}{6}, \infty \right )$$
  • Question 3
    1 / -0
    Vectors $$\vec a = \hat i + 2 \hat j + 3 \hat k, \vec b = 2 \hat i - \hat j + \hat k$$ and $$\vec c = 3 \hat i + \hat j + 4 \hat k$$ are so placed that the end point of one vector is the starting point of the next vector, then the vectors are
    Solution
    Given $$\vec{AB}=\vec{a}=\hat{i}+2\hat{j}+3\hat{k}$$
    $$\vec{BC}=\vec{b}=2\hat{i}-\hat{j}+\hat{k}$$
    $$\vec{AC}=\vec{c}=3\hat{i}+\hat{j}+4\hat{k}$$
    To check coplanar $$[\vec{a}\vec{b}\vec{c}]=0$$
    \begin{vmatrix}1&2&3\\ 2&-1&1\\ 3&1&4 \end{vmatrix}=0
    $$1(-5)-2(5)+3(5)=0$$
    It is coplanar
    Now to check a triangular 
    $$\vec{AC}=\vec{AB}+\vec{BC}$$
    $$\hat{i}+2\hat{j}+3\hat{k}+2\hat{i}-\hat{j}+\hat{k}=\vec{AC}$$
    $$3\hat{i}+\hat{j}+4\hat{k}=3\hat{i}+\hat{j}+4\hat{k}=\vec{AC}$$
    So condition is followed it is triangular
  • Question 4
    1 / -0
    $$L_{1}and L_{2}$$ are two lines whose vector equations are

    $$L_{1}:\vec{r}=\lambda \left ( (\cos \theta+\sqrt{3})\hat{i}+(\sqrt{2}\sin\theta)\hat{j}+(\cos \theta-\sqrt{3})\hat{k} \right )$$

    $$L_{2}:\vec{r}=\mu \left ( a \hat{i}+b \hat{j}+c\hat{k} \right ),$$

    Where $$\lambda\ and\ \mu $$ are scalars and $$\alpha$$ is the acute angle

    between $$L_{1}\ and\ L_{2}$$ . If the angle '$$\alpha$$'is independent

    of $$\theta $$ then the value of '$$\alpha$$ ' is
    Solution
    we know that $$cos\alpha=\dfrac{L_1.L_2}{|L_1|.|L_2|}$$ where $$\alpha$$  is the angle between the vectors $$L_1,L_2$$.

    $$\implies cos\alpha=\dfrac{\lambda\mu(a(cos\theta+\sqrt 3)+b(\sqrt 2sin\theta)+c(cos\theta-\sqrt 3))}{\lambda\mu(\sqrt{a^2+b^2+c^2}).(\sqrt{cos^2\theta+3+2\sqrt 3cos\theta+2sin^2\theta+cos^2\theta+3-2\sqrt 3cos\theta})}$$

    $$\implies cos\alpha=\dfrac{(a+c)cos\theta+\sqrt 3(a-c)+b\sqrt 2sin\theta}{8(\sqrt{a^2+b^2+c^2})}$$

    For $$\alpha$$ to be independent of $$\theta$$

    $$a+c=0$$ ..........(1)

    and $$b=0$$ ........(2)

    Therefore, $$cos\alpha=\dfrac{\sqrt 3(a-c)}{\sqrt 8.(\sqrt{a^2+c^2})}$$

    $$\implies cos\alpha=\dfrac{\sqrt 3(2a)}{(\sqrt{8\times2a^2})}$$

    $$\implies cos\alpha=\dfrac{\sqrt 3}{2}$$

    $$\implies \alpha=\dfrac{\pi}{6}$$
  • Question 5
    1 / -0

    Directions For Questions

    $$ABC$$ is a triangle in which $$\overrightarrow{AB}=\vec {b}$$  and $$ \overrightarrow{AC}=\vec {c}.P$$ is a point on $$AB$$ such that $$AP : PB = 1 : 2$$.
    $$Q$$ is a point on $$BC$$ such that $$CQ : QB = 2 : 1$$. $$AQ$$ and $$CP$$ meet at $$R$$.

    ...view full instructions

    $$\overrightarrow{AR}$$ is
    Solution
    Choosing $$A$$ as the origin of reference , we find $$\bar{b}$$ and $$\, \bar{c}$$ are the position vectors of $$B$$ and $$C$$ respectively.

    Position vector of $$P$$ is $$\displaystyle \dfrac{\bar{b}}{3}$$ 

    Position vector of $$Q$$ is $$\displaystyle \dfrac{2\bar{b}+\bar{c}}{3}$$

    $$\therefore $$ Lets take $$R$$ divides $$AQ$$ in the ratio   $$(1-t):t 
    $$                                                                                         
    $$\displaystyle \overline{r}=(1-t)\overline{o}+t\left(\dfrac{2\overline{b}+\overline{c}}{3}\right)$$  where $$t$$ is a scalar 
    $$\overrightarrow { r } =t\left( \dfrac { 2b+c }{ 3 }  \right) $$ 

    Lets take $$R$$ divides $$CP$$ in the ratio    $$s:1-s $$     is  
    $$\overline{r}=(1-s)\overline{c}+s \overline{\dfrac{b}{3}}$$,   where $$s$$ is a scalar 

    If $$AQ$$ and $$CP$$ are to intersect 
    $$\displaystyle t\left(\dfrac{2\overline{b}+\overline{c}}{3}\right)=(1-s)\overline{c}+s\overline{ \dfrac{b}{3}}$$  for same $$t$$ and $$s$$ 

    Equating like components   
    $$\displaystyle \dfrac{2t}{3}=\dfrac{s}{3}$$ and $$\displaystyle \dfrac{t}{3}=1-s$$

    On solving we get,
    $$\displaystyle t=\dfrac{3}{7}$$ and $$\displaystyle s=\dfrac{6}{7}$$ 

    $$\therefore $$ $$\displaystyle \overline{AR}=\dfrac{3}{7}\left(\dfrac{2\overline{b}+\overline{c}}{3}\right)=\dfrac{1}{7}(2\overline{b}+\overline{c})$$

  • Question 6
    1 / -0
    $$ABCD$$ a parallelogram, $$A_1$$ and $$B_1$$ are the midpoints of sides $$BC$$ and $$CD$$, respectively. If $$\vec{AA_1} + \vec{AB_1} = \lambda \vec{AC}$$, then $$\lambda$$ is equal to
    Solution
    Let P.V. of $$A, B$$ and $$D$$ be $$\vec 0, \vec b,$$ and $$\vec d$$, respectively.
    Then P.V. of $$C, \vec c = \vec b + \vec d$$
    Also, P.V of $$A_1 = \vec b + \displaystyle \dfrac{\vec d}{2}$$
    and P.V. of $$B_1 = \vec d + \displaystyle \dfrac{\vec b}{2}$$
    $$\Rightarrow \vec{AA_1} + \vec{AB_1} = \displaystyle \dfrac{3}{2} (\vec b + \vec d) = \dfrac{3}{2} \vec{AC}$$

  • Question 7
    1 / -0
    In a parallelogram $$OABC,$$ vectors $$\vec{a}, \vec{b}, \vec{c}$$ are, respectively, the position vectors of vertices $$A, B, C$$ with reference to $$O$$ as origin. A point $$E$$ is taken on the side $$BC$$  which divides it in the ratio of $$2 : 1$$. Also, the line segment  $$AE$$  intersects the line bisecting the angle $$\angle$$AOC internally at point $$P$$. If $$CP$$ when extended meets $$AB$$  in point $$F,$$  then the position vector of point $$P$$  is
    Solution
    Let the position vector of  $$A$$  and  $$C$$  be $$\vec{a}$$ and $$\vec{c}$$ respectively. Therefore,
    Position vector of $$B = \vec{b} = \vec{a} + \vec{c}$$...........................................................$$(i)$$
    Also Position vector of $$E = \displaystyle \dfrac{\vec{b} + 2 \vec{c}}{3} = \dfrac{\vec{a} + 3 \vec{c}}{3}$$ ............................................................$$(ii)$$
    Now point $$P$$  lies on angle bisector of $$\angle AOC.$$  Thus,
    Position vector of point $$P =\displaystyle \lambda \left ( \frac{\vec{a}}{|\vec{a}|} + \frac{\vec{b}}{|\vec{b}|} \right )$$............................................................................$$(iii)$$
    Also let $$P$$  divides $$EA$$  in ration $$\mu : 1$$. Therefore,
    Position vector of $$P$$
    $$\displaystyle = \dfrac{\mu \vec{a} + \dfrac{\vec{a} + 3 \vec{c}}{3}}{\mu + 1} = \dfrac{(3 \mu + 1) \vec{a} + 3 \vec{c}}{3 (\mu + 1)}$$................................................................................$$(iv)$$
    Comparing $$(iii)$$ and  $$(iv),$$  we get
    $$\lambda \left ( \dfrac{\vec{a}}{|\vec{a}|} + \dfrac{\vec{c}}{|\vec{c}|} \right ) = \dfrac{ (3 \mu + 1) \vec{a} + 3 \vec{c}}{3 (\mu + 1)}$$
    $$\Rightarrow \displaystyle \dfrac{\lambda}{|\vec{a}|} = \dfrac{3 \mu + 1}{3 (\mu + 1)}$$ and $$\displaystyle \dfrac{\lambda}{|\vec{c}|} = \dfrac{1}{\mu + 1}$$
    $$\Rightarrow  \displaystyle \dfrac{3 |\vec{c}| - |\vec{a}|}{3 |\vec{a}|} = \mu$$
    $$\displaystyle \Rightarrow \dfrac{\lambda}{|\vec{c}|} = \dfrac{1}{\dfrac{3 |\vec{c}| - \vec{a}}{3 |\vec{a}|}+1}$$
    $$\Rightarrow \displaystyle \lambda = \dfrac{3 |\vec{a}| |\vec{c}|}{3 |\vec{c}| + 2 |\vec{a}|}$$
    Hence, position vector of  $$P$$  is $$\displaystyle \dfrac{3 |\vec{a}| |\vec{c}|}{ 3 |\vec{c}| + 2 |\vec{c}|} \left ( \dfrac{\vec{a}}{|\vec{a}|} + \dfrac{\vec{c}}{|\vec{c}|} \right )$$
    Let  $$F$$  divides $$AB$$ in ratio $$t : 1,$$  then position vector of  $$F$$  is $$\displaystyle \dfrac{t \vec{b} + \vec{a}}{ t + 1} $$

  • Question 8
    1 / -0

    Directions For Questions



    Let $$OABCD$$ be a pentagon in which the sides $$OA$$ and $$CB$$ are parallel and the sides  $$OD$$  and $$AB$$  are parallel. Also $$OA : CB =2 : 1$$ and $$OD : AB = 1 : 3$$.

    ...view full instructions

    The ratio $$\displaystyle \dfrac{OX}{XC}$$ is

    Solution
    Let the position vectors of $$A, B, C$$ and $$D$$ be $$\vec{a}, \vec{b}, \vec{c}$$ and $$\vec{d}$$, respectively. 
    Then, $$OA : CB = 2 : 1$$
    $$\Rightarrow \vec{OA} = 2 \vec{CB}$$
    $$\Rightarrow \vec{a} = 2 (\vec{b} - \vec{c})$$     ....$$(i)$$
    and $$OD : AB = 1 : 3$$
    $$3\vec{OD} = \vec{AB}$$
    $$\Rightarrow 3\vec{d} = (\vec{b} - \vec{a}) = \vec{b} - 2 (\vec{b} - \vec{c})$$      [Using $$(i)$$]
    $$= -\vec{b}+ 2\vec{c}$$     .....$$(ii)$$

    Let $$OX : XC = \lambda : 1$$ and $$AX : XD =\mu : 1$$
    Now, 
    $$X$$ divides $$OC$$ in the ratio $$\lambda : 1$$. 
    Therefore,
    P.V of $$X = \displaystyle \frac{\lambda \vec{c}}{\lambda + 1}$$     ....$$(iii)$$

    $$X$$ also divides $$AD$$ in the ratio $$\mu : 1$$. 
    Therefore,
    P.V. of $$\displaystyle X = \dfrac{\mu \vec{d} + \vec{a}}{\mu + 1}$$   ...$$(iv)$$

    From $$(iii)$$ and $$(iv)$$, we get
    $$\displaystyle \dfrac{\lambda \vec{c}}{\lambda + 1} = \dfrac{\mu \vec{d} + \vec{a}}{\mu + 1}$$

    or $$\displaystyle \left ( \frac{\lambda}{\lambda + 1} \right ) \vec{c} = \left ( \frac{\mu}{\mu + 1} \right )\vec{d} + \left ( \frac{1}{\mu + 1} \right ) \vec{a}$$

    or $$\displaystyle \left (\dfrac{\lambda}{\lambda + 1} \right ) \vec{c} = \left ( \dfrac{\mu}{\mu + 1} \right ) \left ( \dfrac{-\vec{b} + 2 \vec{c}}{3} \right ) + \left ( \dfrac{1}{\mu + 1} \right ) 2 \left ( \vec{b} - \vec{c} \right )$$    ....(using $$(i)$$ and $$(ii)$$)

    or $$\displaystyle \left ( \frac{\lambda}{\lambda + 1} \right ) \vec{c}= \left ( \frac{6 - \mu}{3 (\mu + 1)} \right ) \vec{b} + \left ( \frac{2 \mu}{3 (\mu + 1)} - \frac{2}{\mu + 1} \right ) \vec{c}$$

    or $$\displaystyle \left ( \dfrac{\lambda}{\lambda + 1} \right ) \vec{c} = \left ( \dfrac{6 - \mu}{3 (\mu + 1)} \right ) \vec{b} + \left ( \dfrac{2\mu - 6}{3 (\mu + 1)} \right ) \vec{c}$$

    or $$\displaystyle \left ( \frac{6 - \mu}{3 (\mu + 1)} \right )\vec{b} + \left ( \frac{2 \mu - 6}{3 (\mu + 1)} - \frac{\lambda}{\lambda + 1} \right ) \vec{c} = \vec{0}$$

    or $$\displaystyle \dfrac{6 - \mu}{3 (\mu + 1)} = 0$$ and $$\displaystyle \dfrac{2 \mu - 6}{3 (\mu + 1)} - \dfrac{\lambda}{\lambda + 1} = 0$$

    (as $$\vec{b}$$ and $$\vec{c}$$ are non-collinear)

    or $$\displaystyle \mu = 6, \lambda = \dfrac{2}{5}$$

    Hence, $$ OX : XC = 2 : 5$$
  • Question 9
    1 / -0
    The projection of the line joining the points $$(3, 4, 5)$$ and $$(4, 6, 3)$$ on the line joining the points $$(-1, 2, 4)$$ and $$(1, 0, 5)$$ is
    Solution
    Let $$AB=(4-3)\hat i+(6-4)\hat j+(3-5)\hat k=\hat i+2\hat j-2\hat k$$ and $$PQ=(1+1)\hat i+(0-2)\hat j+(5-4)\hat k=2\hat i-2\hat j+\hat k$$
    Hence projection of $$AB$$ on $$PQ$$ is $$=\left |\cfrac{AB\cdot PQ}{|AB||PQ|}\right |$$
    $$=\left |\cfrac{1(2)+2(-2)-2(1)}{\sqrt{3}\sqrt{3}}\right |$$
    $$=\cfrac{4}{3}$$
  • Question 10
    1 / -0
    A parallelogram is constructed on the vectors $$\bar{\alpha }$$ and $$\bar{\beta }$$. A vector which coincides with the altitude of the parallelogram and perpendicular to the side $$\bar{\alpha }$$ expressed in terms of the vectors $$\bar{\alpha }$$ and $$\bar{\beta }$$ is
    Solution
    $$(\alpha\times\beta)$$ will give us the perpendicular vector or the normal to the plane where the parallelogram is lying.

    Now 
    $$(\alpha\times \beta)\times \alpha$$ will give the vector parallel to the altitude of the parallelogram which is perpendicular to side $$\bar {\alpha}$$.

    Thus the unit vector of the altitude of the given parallelogram perpendicular to $$\bar{\alpha}$$ will be 
    $$=\dfrac{(\alpha\times\beta)\times\alpha}{|\alpha|^{2}}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now