Self Studies

Vector Algebra Test - 68

Result Self Studies

Vector Algebra Test - 68
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$\vec{a} = 2 \widehat{i} - \widehat{j} + \widehat{k}, \vec{b} = \widehat{i} + 2\widehat{j} - \widehat{k} $$ and $$ \vec{c} = \widehat{i} + \widehat{j} - 2 \widehat{k}$$. A vector coplanar with $$\vec{b}$$ and $$\vec{c}$$ whose projection on $$\vec{a}$$ is magnitude $$\displaystyle \sqrt{\dfrac{2}{3}} $$ is
    Solution
    Let the required vector be $$\vec{r}$$, then
    $$\vec{r} = x_1 \vec{b} + x_2 \vec{c}$$ and $$\vec{r} \cdot \vec{a} = \displaystyle \sqrt{\dfrac{2}{3}} (|\vec{a}|) = 2$$

    Now, $$\vec{r} \cdot \vec{a} = x_1 \vec{a} \cdot \vec{b} + x_2 \vec{a} \cdot \vec{c}$$
    $$\Rightarrow 2 = x_1 (2 - 2 - 1) + x_2 (2 - 1 - 2)$$
    $$\Rightarrow x_1 + x_2 = -2$$
    $$\Rightarrow \vec{r} = x_1 (\widehat{i} + 2 \widehat{j} - \widehat{k}) + x_2 (\widehat{i} + \widehat{j} - 2 \widehat{k})$$
    $$= \widehat{i} (x_1 + x_2) + \widehat{j} (2x_1 + x_2) - \widehat{k} (2x_2 + x_1)$$
    $$= - 2\widehat{i} + \widehat{j} (x_1 - 2) - \widehat{k} (-4 - x_1)$$,       
    where $$x_1 \in  R$$
  • Question 2
    1 / -0
    '$$P$$' is a point inside the triangle $$ABC$$, such that $$\displaystyle BC\left ( \vec{PA} \right )+CA\left ( \vec{PB} \right )+AB\left ( \vec{PC} \right )=0,$$ then for the triangle $$ABC$$ the point $$P$$ is its :
    Solution
    Given that, $$P$$ is a point inside the triangle $$ABC$$, such that $$\displaystyle BC\left ( \vec{PA} \right )+CA\left ( \vec{PB} \right )+AB\left ( \vec{PC} \right )=0$$

    Let, $$BC=a,CA=b,AB=c$$ and $$\vec{OA}=\bar{a},\vec{OB}=\bar{b},\vec{OC}=\bar{c}$$

    $$\Rightarrow a(\bar{a}-\vec{OP})+b(\bar{b}-\vec{OP})+c(\bar{c}-\vec{OP})=0$$

    $$\Rightarrow \vec{OP}=\displaystyle\dfrac{a\bar{a}+b\bar{b}+c\bar{c}}{a+b+c}$$

    $$\therefore P$$ is an Incentre of triangle $$ABC$$.

    Hence, option $$A$$.
  • Question 3
    1 / -0
    Let the pairs $$\vec{a}, \vec{b}$$ and $$\vec{c}, \vec{d}$$ each determine a plane, then the planes are parallel if
    Solution
    $$\vec{a} \times \vec{b}$$ is a vector perpendicular to the plane contining $$\vec{a}$$ and $$\vec{b}$$. 

    Similarly, $$\vec{c} \times \vec{d}$$ is a vector perpendicular to the plane containing $$\vec{c}$$ and $$\vec{d}$$.

    Thus, the two planes will be parallel if their normals,
    i.e., $$\vec{a} \times \vec{b}$$ and $$\vec{c} \times \vec{d}$$, are parallel. 

    Thus,
    $$(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = \vec{0}$$

    Hence, option $$C$$.
  • Question 4
    1 / -0
    Let $$\vec{a},\vec{b},\vec{c}$$ be vectors of length $$3,4,5$$ respectively. Let $$\vec{a}$$ be perpendicular to $$\vec{b}+\vec{c},\vec{b}\,to\,\vec{c}+\vec{a}$$ and $$\vec{c}\,to\,\vec{a}+\vec{b}$$. Then $$\begin{vmatrix}\vec{a}+\vec{b}+\vec{c}\end{vmatrix}$$ is
    Solution

    $$\begin{vmatrix}\vec{a}+\vec{b}+\vec{c}\end{vmatrix}=\sqrt{(\vec{a}+\vec{b}+\vec{c})^2} =\sqrt{a^2+b^2+c^2+2\begin{pmatrix}\vec{a}.\vec{b}+\vec{b}.\vec{c}+\vec{c}.\vec{a}\end{pmatrix}} $$ {Modulus formula for vectors}

    $$\because\,\vec{a}.\begin{pmatrix}\vec{b}+\vec{c}\end{pmatrix}=0,\;\vec{b}.\begin{pmatrix}\vec{c}+\vec{a}\end{pmatrix}=0\,\&\,\vec{c}.\begin{pmatrix}\vec{a}+\vec{b}\end{pmatrix}=0$$ [As the given conditions of being perpendicular} 

    $$\Rightarrow \vec{a}.\vec{b}+\vec{b}.\vec{c}+\vec{c}.\vec{a}=0$$ {expanding the previous expression and substituting in the first expression}

    $$\Rightarrow \begin{vmatrix}\vec{a}+\vec{b}+\vec{c}\end{vmatrix}=\sqrt{a^2+b^2+c^2}=\sqrt{3^2+4^2+5^2}=5\sqrt{2}$$

  • Question 5
    1 / -0
    $$ABCDEF$$ is a regular hexagon . The centre of hexagon is a point O. Then the value of 
    $$\overrightarrow{AB}+ \overrightarrow{AC}+\overrightarrow{AD}+\overrightarrow{AE}+\overrightarrow{AF}$$ is 
    Solution
    We have 
    $$\overrightarrow{AB}+ \overrightarrow{AC}+\overrightarrow{AD}+\overrightarrow{AE}+\overrightarrow{AF}$$
    We have
    $$\overrightarrow{AB}+ \overrightarrow{AC}=\overrightarrow{AB}+ (\overrightarrow{AB}+\overrightarrow{BC})=2\overrightarrow{AB}+\overrightarrow{BC}.............(i)$$
    and
    $$\overrightarrow{AE}+\overrightarrow{AF}=(\overrightarrow{AD}+\overrightarrow{DE})+(\overrightarrow{AD}+\overrightarrow{DE}+\overrightarrow{EF})=2\overrightarrow{AD}+2\overrightarrow{DE}+\overrightarrow{DF}............(ii)$$
    From $$i$$ and $$ii$$ we see that $$\overrightarrow{AB}$$ and $$\overrightarrow{AC}$$ are vectorially opposite to $$\overrightarrow{DE}$$ and $$\overrightarrow{DF}$$
    Thus we get
    $$\overrightarrow{AB}+ \overrightarrow{AC}+\overrightarrow{AD}+\overrightarrow{AE}+\overrightarrow{AF}= 3\overrightarrow{AD}=6\overrightarrow{AO}$$
  • Question 6
    1 / -0
    The edges of a parallelopiped are of unit length and are parallel to non-coplanar unit vectors a, b, c such that a.b = b.c = c.a = 1/2. What is the volume of the parallelopipe.
    Solution

  • Question 7
    1 / -0
    Let $$b = 4i + 3j $$ and $$c$$ be two vectors perpendicular to each other in the xy-plane. If $$ r_i, \ i =1, 2 ... n$$, are the vectors in the same plane having projections $$1 $$ and $$2$$ along $$b$$ and $$c$$ respectively then $$ \displaystyle \sum_{i=1}^{n} \left| r_{i}\right|^{2}$$ is equal to
    Solution
    Let $$ r=\lambda b + \mu c $$ and $$c = \pm (xi + yj).$$ Since $$c$$ and $$b$$ are perpendicular, we have
    $$\displaystyle 4x + 3y = 0 \Rightarrow c= \pm x\left( i-\frac{4}{3}j\right)$$
    $$ \pm 1= proj\cdot of $$r$$ on $$b$$ \displaystyle=\frac{ r\cdot b}{\left| b\right| }=\frac{(\lambda b+\mu c)\cdot b}{\left| b\right| }
    =\frac{\lambda b\cdot b}{\left| b\right| } [\because b\cdot c=0]$$
    $$ \lambda \left| b\right| =5 \lambda $$ Hence $$ \lambda=\pm 1/5$$
    Also $$ \pm 2=proj.$$ of $$ r $$ on $$\displaystyle c=\frac {r\cdot c}{\left|c\right|}$$
    $$\displaystyle =\frac{(\lambda b+\mu c)\cdot c}{\left| c\right|} =\mu \left| c\right| =\frac{5}{3} \mu x$$
    Thus, $$ \mu x =\pm 6/5$$ Therefore,
    $$\displaystyle r=\frac{1}{5} (4i+3j)+\frac{6}{5}\left( i-\frac{4}{3}j\right) =\pm (2i-j,)$$
    $$\displaystyle r=\frac{1}{5} (4i+3j)-\frac{6}{5}\left( i-\frac{4}{3}j\right) =\pm \left (-\frac{2}{5} i+ \frac{11}{5}j,\right)$$
    Thus there are four such vectors
    $$ \displaystyle \sum_{i=1}^{4} \left| r_{i}\right|^{2}=2 \left| 2i -j\right| ^{2} +\left| -\frac{ 2}{5} i + \frac{11}{5} j\right|^{2} =20$$
  • Question 8
    1 / -0
    The magnitude of the projection of the vector $$\overline{a} =4\overline{i}-3\overline{j}+2\overline{k}$$ on the line which makes equal angles with the coordinate axes is 
    Solution
    Given $$a=4i-3j+2k$$

    The line which makes equal angle with the coordinate axis is $$b=i+j+k$$

    The projection of $$a$$ on $$b$$ is $$\dfrac{a.b}{b} = \dfrac{4-3+2}{\sqrt3}=\dfrac{3}{\sqrt3}=\sqrt3$$
  • Question 9
    1 / -0
    Let $$ x_{0}$$ and $$x_{1}$$ be the critical points of $$\displaystyle f(x) =\int_{1}^{x}(t(t + 1) (t + 2) (t + 3)- 24).dt $$ and $$ \vec r$$ & $$\vec r'$$ be the parallel vectors with $$\left| \vec r \right| =\left| x_{0}\right| $$ and $$\left| \vec r\ ' \right| =\left|x_{1}\right| ,$$ then $$ \vec r\cdot \vec r\ '$$ is equal to
    Solution
    $$\displaystyle f(x)=\int _{ 1 }^{ x } (t(t+1)(t+2)(t+3)24)dt$$
    $$ f'( x) =x(x + 1)(x + 2)(x + 3) -24 $$,  
    Clearly $$ f'(1) =0,$$ 
    Dividing $$ f'(x)$$ by $$ x -1$$, we get 
    $$ f'(x) = (x -1)(x + 4)(x^{2} + 3x + 6)$$
    Thus the critical points are $$ x = 1, -4.$$ 
    Hence $$ r \cdot r'= \left| x_{0}\right| \left| x_{1}\right| =1\times 4 = 4.$$
  • Question 10
    1 / -0
    If one point on the vector $$2i -4j-k$$ is $$(2,1,3)$$,the other point is?
    Solution
    Let the other point on the vector $$2i-4j-k$$ be $$(x,y,z)$$. Given point on the vector is $$(2,1,3)$$.

    Thus the vector is represented as
    $$(2,-4,-1) = (x,y,z)-(2,1,3)$$
    $$(2,-4,-1)=(x-2,y-1,z-3)$$

    Equating the corresponding points we get $$2=x-2, -4=y-1, -1=z-3$$

    $$\Rightarrow x=4, y=-3, z=2$$

    Hence the other point on the vector is $$(4,-3,2)$$.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now