Self Studies

Vector Algebra Test - 69

Result Self Studies

Vector Algebra Test - 69
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$EFGH$$ is a rhombus such the angle $$EFG$$ is $${60}^{o}$$. The magnitude of vectors $$\overrightarrow { FH } $$ and $$\left\{ m\overrightarrow { EG }  \right\} $$ are equal where $$m$$ is a scalar. What is the value of $$m$$?
    Solution
    Let the side of rhombus 
    $$\vec{EF}=\hat{i}+\hat{j}$$
    $$\vec{FG}=\hat{j}+\hat{k}$$
    Here the angle between $$\vec{EF},\vec{FG}$$ is 60
    $$\vec{EF}\cdot\vec{FG}=\left | \vec{EF} \right |\left | \vec{FG} \right |\cos\theta$$
    $$(\hat{i}+\hat{j})\cdot(\hat{j}+\hat{k})=\sqrt{1^2+1^2}\sqrt{1^2+1^2}\cos\theta$$
    $$1=\sqrt{2}\sqrt{2}\cos\theta$$
    $$\dfrac{1}{2}=\cos\theta$$
    $$\theta=60$$
    Hence our vector satisfying the given condition

    EG is the diagonal so by triangle law in triangle EFG
    $$\vec{EG}=\vec{EF}+\vec{FG}$$
    $$\vec{EG}=\hat{i}+\hat{j}+\hat{j}+\hat{k}$$
    $$\vec{EG}=\hat{i}+2\hat{j}+\hat{k}$$
    FH is also diagonal so in triangle FGH
    $$\vec{FH}=\vec{FG}+\vec{GH}$$
    but $$\vec{GH}=-\vec{EF}$$
    $$\vec{FH}=\vec{FG}-\vec{EF}$$
    $$\vec{FH}=\hat{j}+\hat{k}-\hat{i}-\hat{j}$$
    $$\vec{FH}=-\hat{i}+\hat{k}$$
    $$m\left | \vec{FH} \right |=\left | \vec{EG} \right |$$
    $$m\sqrt{(-1)^2+1^2}=\sqrt{1^2+2^2+1^2}$$
    $$m\sqrt{1+1}=\sqrt{1+4+1}$$
    $$m\sqrt{2}=\sqrt{6}$$
    $$m=\dfrac{\sqrt{6}}{\sqrt{2}}$$
    $$m=\sqrt{3}$$
  • Question 2
    1 / -0
    The direction cosines l , m and n of two lines are connected by the relations l+m+n=0, lm=0, then the angles between them is 
    Solution

  • Question 3
    1 / -0

    If the sum of two unit vectors is also a unit vector, then the angle between the two vectors is

    Solution
    Given condition
    $$\vec { a } +\vec { b } =\vec { c } $$
    where
    $$\left| \vec { a }  \right| =\left| \vec { b }  \right| =\left| \vec { c }  \right| =1$$
    Squaring both sides
    $${ \left| \vec { a }  \right|  }^{ 2 }+{ \left| \vec { b }  \right|  }^{ 2 }+2.\left| \vec { a }  \right| .\left| \vec { b }  \right| .\cos { \theta  } ={ \left| \vec { c }  \right|  }^{ 2 }$$
    $$1+1+2\cos { \theta  } ={ \left| \vec { c }  \right|  }^{ 2 }=1$$
    $$2\cos { \theta  } =-1$$
    $$\cos { \theta  } =\cfrac { -1 }{ 2 } $$
    $$\cos { \theta  } =\cos { \left( \pi -\cfrac { \pi  }{ 3 }  \right)  } $$
    $$\theta =\cfrac { 2\pi  }{ 3 } $$
  • Question 4
    1 / -0
    If P(x, y, z) is a point on the line segment joining Q(2, 2, 4) and R(3, 5, 6) such that the projections of $$\overrightarrow{OP}$$ on the axes are $$\dfrac{13}{5}, \dfrac{19}{5}, \dfrac{26}{5}$$ respectively, then P divides QR in the ratio
    Solution
    Let $$ P \left ( x,y,z \right ) $$
    $$ Q \left ( 2,2,4 \right ) $$
    $$ R \left ( 3,5,6 \right ) $$

    Let the ratio in which  $$ P \left ( x,y,z \right ) $$ divides the line joining $$ Q \left ( 2,2,4 \right ),  R \left ( 3,5,6 \right ) $$ be $$\lambda :1 $$ 

    According to the section formula ,
    $$P\left ( x,y,z \right ) =\left ( \dfrac{3\lambda +2}{\lambda +1} ,\dfrac{5\lambda +2}{\lambda +1},\dfrac{6\lambda +4}{\lambda +1}\right )$$

    Projection  of $$ \vec{a} $$ on $$\vec{b}$$ is $$ \dfrac{\vec{a}\cdot \vec{b}}{ \left | \vec{b} \right |} $$
    It is given that projection of $$ \vec{OP} $$ on coordinate axes are $$\dfrac {13}{5}, \dfrac {19}{5}, \dfrac{26}{5} $$ is 
    $$ \dfrac{\left ( x,y,z \right )\cdot \left ( 1,0,0 \right )}{ \left | 1,0,0 \right |} = \dfrac{13}{5} $$

    $$ x=  \dfrac{13}{5}  = \dfrac{3\lambda +2}{\lambda +1}  $$

    $$\lambda =\dfrac{3}{2} $$
  • Question 5
    1 / -0
    What are coinitial vectors.?
    Solution
    two vectors having same magnitude called equal vector 
    Hence option $$A$$ is not correct 
    option $$B$4 also is the property of equal vector 
    coinitail means the initail point is same 
    So option $$C$$ is correct 
  • Question 6
    1 / -0
    If three non-zero vectors are $$a=a_1i+a_2j+a_3k , \, b=b_1i+b_2j+b_3k$$ and $$ c=c_1i+c_2j+c_3k$$ . If c is the unit vector perpendicular to the vectors a and b the angle between a and b is $$\dfrac{\pi}{6}$$ , then $$\begin{vmatrix}a_1 & a_2 & a_3\\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3\end{vmatrix}$$ is equal to
  • Question 7
    1 / -0
    If the vectors $$\overline { c } ,\overline { a } =x\hat { i } +y\hat { j } +z\hat { k } $$, and $$\overline { b } =\hat { j }$$  are such that $$\overline { a } ,\overline { c } \ and \ \overline { b }$$  from a right handed system, then $$\overline { c }$$  is 
    Solution

  • Question 8
    1 / -0
    Let $$O$$ be an interior point of $$\triangle ABC$$ such that $$\overline {OA} + 2\overline {AB} + 3\overline {OC} = \overline {O}$$, then the ratio of $$\triangle ABC$$ to area of $$\triangle AOC$$ is
    Solution
    Refer to the figure. Let O be the origin.
    Let $$\bar { OA } =\bar { a } $$
    $$\bar { OB } =\bar { b } $$
    $$\bar { OC } =\bar { c } $$

    Given, $$\bar { OA } +2\bar { OB } +3\bar { OC } =0$$

    $$\therefore \bar { a } +2\bar { b } +3\bar { c } =0$$

    $$\therefore \bar { a } =-2\bar { b } -3\bar { c } $$         (1)

    1) Area of triangle ABC is given by,
    $$A\left( \triangle ABC \right) =\frac { 1 }{ 2 } \left| \bar { AB } \times \bar { BC }  \right| $$

    $$\therefore A\left( \triangle ABC \right) =\frac { 1 }{ 2 } \left| \left( \bar { b } -\bar { a }  \right) \times \left( \bar { c } -\bar { b }  \right)  \right| $$

    From equation (1),

    $$A\left( \triangle ABC \right) =\frac { 1 }{ 2 } \left| \left( \bar { b } -\left( -2\bar { b } -3\bar { c }  \right)  \right) \times \left( \bar { c } -\bar { b }  \right)  \right| $$

    $$A\left( \triangle ABC \right) =\frac { 1 }{ 2 } \left| \left( \bar { b } +2\bar { b } +3\bar { c }  \right) \times \left( \bar { c } -\bar { b }  \right)  \right| $$

    $$A\left( \triangle ABC \right) =\frac { 1 }{ 2 } \left| \left( 3\bar { b } +3\bar { c }  \right) \times \left( \bar { c } -\bar { b }  \right)  \right| $$

    $$\therefore A\left( \triangle ABC \right) =\frac { 3 }{ 2 } \left| \left( \bar { b } +\bar { c }  \right) \times \left( \bar { c } -\bar { b }  \right)  \right| $$

    $$\therefore A\left( \triangle ABC \right) =\frac { 3 }{ 2 } \left| \left( \bar { b } \times \bar { c }  \right) -\left( \bar { b } \times \bar { b }  \right) +\left( \bar { c } \times \bar { c }  \right) -\left( \bar { c } \times \bar { b }  \right)  \right| $$

    But, $$\bar { b } \times \bar { b } =0$$ and $$\bar { c } \times \bar { c } =0$$

    $$\therefore A\left( \triangle ABC \right) =\frac { 3 }{ 2 } \left| \left( \bar { b } \times \bar { c }  \right) -\left( \bar { c } \times \bar { b }  \right)  \right| $$

    $$\therefore A\left( \triangle ABC \right) =\frac { 3 }{ 2 } \left| \left( \bar { b } \times \bar { c }  \right) +\left( \bar { b } \times \bar { c }  \right)  \right| $$
            $$\left( \because \left( \bar { a } \times \bar { b }  \right) =-\left( \bar { b } \times \bar { a }  \right)  \right) $$

    $$\therefore A\left( \triangle ABC \right) =\frac { 3 }{ 2 } \left| 2\left( \bar { b } \times \bar { c }  \right)  \right| $$

    $$\therefore A\left( \triangle ABC \right) =3\left| \left( \bar { b } \times \bar { c }  \right)  \right| $$          (2)

    2) Area of triangle AOC is given by,
    $$\therefore \left( \triangle AOC \right) =\frac { 1 }{ 2 } \left| \bar { OA } \times \bar { OC }  \right| $$

    $$\therefore \left( \triangle AOC \right) =\frac { 1 }{ 2 } \left| \bar { a } \times \bar { c }  \right| $$

    From equation (1),
    $$A\left( \triangle AOC \right) =\frac { 1 }{ 2 } \left| \left( -2\bar { b } -3\bar { c }  \right) \times \bar { c }  \right| $$

    $$\therefore A\left( \triangle AOC \right) =\frac { 1 }{ 2 } \left| -2\left( \bar { b } \times \bar { c }  \right) -3\left( \bar { c } \times \bar { c }  \right)  \right| $$

    $$\therefore A\left( \triangle AOC \right) =\frac { 2 }{ 2 } \left| \left( \bar { b } \times \bar { c }  \right)  \right| $$

    $$\therefore A\left( \triangle AOC \right) =\left| \left( \bar { b } \times \bar { c }  \right)  \right| $$           (3)

    Now, $$\frac { A\left( \triangle ABC \right)  }{ A\left( \triangle AOC \right)  } =\frac { 3\left| \left( \bar { b } \times \bar { c }  \right)  \right|  }{ \left| \left( \bar { b } \times \bar { c }  \right)  \right|  } $$

    $$\frac { A\left( \triangle ABC \right)  }{ A\left( \triangle AOC \right)  } =3$$
  • Question 9
    1 / -0
    If vectors $$i+2j+2k$$ is rotated through an angle of $${90}^{o}$$ so as to cross positive direction of y-axis, then the vector in the new positive is?
    Solution
    Let the new position of the vector be $$OP′=xi+yj+zk.$$ As $$OP$$ is making $$90^{\circ}$$ with $$OP′.$$
    So $$(xi+yj+zk).(i+2j+2k)=0⇒x+2y+2z=0  -----(1)$$
    Also $$|\vec{OP}|=|\vec{OP′}|$$
    $$x^2+y^2+z^2=9  ------(2)$$
    Now if we say that the vector moves in such a way that it touches the y axis then we (perhaps) may assume that it moves in the plane determined by $$i$$  and $$i+2j+2k$$, the vector itself. A normal vector to this plane is $$j ×(i +2j +2k )=2i-k $$. The equation of such a plane is $$2x=z.$$
    So we have the following equation from (1) and (2)
    $$5x+2y=0$$
    and $$5x^2+y^2=9$$
    From here, 
    $$x=\pm\dfrac{2}{\sqrt{5}}$$
    $$\rightarrow y=\mp\sqrt{5}$$
    $$z=\pm\dfrac{4}{\sqrt{5}}$$
    So the two vectors are $$OP'=\dfrac{2}{\sqrt{5}}i-\sqrt{5}j+\dfrac{4}{\sqrt{5}}k$$
    and $$OP'=-\dfrac{2}{\sqrt{5}}i+\sqrt{5}j-\dfrac{4}{\sqrt{5}}k$$
    Note that there are two solutions in general. But one of them does not touch the y axis while moving along the simplest path. Our solution is
    $$OP'=-\dfrac{2}{\sqrt{5}}i+\sqrt{5}j-\dfrac{4}{\sqrt{5}}k$$
    Hence, $$(A)$$
  • Question 10
    1 / -0
    A point $$C = \dfrac {5\overline {a} + 4\overline {b} - 5\overline {c}}{3}$$ divides the line joining the points $$A$$ and $$B = 2\overline {a} + 3\overline {b} - 4\overline {c}$$ in the ratio $$2 : 1$$, then the position vector of $$A$$ is
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now