Refer to the figure. Let O be the origin.
Let $$\bar { OA } =\bar { a } $$
$$\bar { OB } =\bar { b } $$
$$\bar { OC } =\bar { c } $$
Given, $$\bar { OA } +2\bar { OB } +3\bar { OC } =0$$
$$\therefore \bar { a } +2\bar { b } +3\bar { c } =0$$
$$\therefore \bar { a } =-2\bar { b } -3\bar { c } $$ (1)
1) Area of triangle ABC is given by,
$$A\left( \triangle ABC \right) =\frac { 1 }{ 2 } \left| \bar { AB } \times \bar { BC } \right| $$
$$\therefore A\left( \triangle ABC \right) =\frac { 1 }{ 2 } \left| \left( \bar { b } -\bar { a } \right) \times \left( \bar { c } -\bar { b } \right) \right| $$
From equation (1),
$$A\left( \triangle ABC \right) =\frac { 1 }{ 2 } \left| \left( \bar { b } -\left( -2\bar { b } -3\bar { c } \right) \right) \times \left( \bar { c } -\bar { b } \right) \right| $$
$$A\left( \triangle ABC \right) =\frac { 1 }{ 2 } \left| \left( \bar { b } +2\bar { b } +3\bar { c } \right) \times \left( \bar { c } -\bar { b } \right) \right| $$
$$A\left( \triangle ABC \right) =\frac { 1 }{ 2 } \left| \left( 3\bar { b } +3\bar { c } \right) \times \left( \bar { c } -\bar { b } \right) \right| $$
$$\therefore A\left( \triangle ABC \right) =\frac { 3 }{ 2 } \left| \left( \bar { b } +\bar { c } \right) \times \left( \bar { c } -\bar { b } \right) \right| $$
$$\therefore A\left( \triangle ABC \right) =\frac { 3 }{ 2 } \left| \left( \bar { b } \times \bar { c } \right) -\left( \bar { b } \times \bar { b } \right) +\left( \bar { c } \times \bar { c } \right) -\left( \bar { c } \times \bar { b } \right) \right| $$
But, $$\bar { b } \times \bar { b } =0$$ and $$\bar { c } \times \bar { c } =0$$
$$\therefore A\left( \triangle ABC \right) =\frac { 3 }{ 2 } \left| \left( \bar { b } \times \bar { c } \right) -\left( \bar { c } \times \bar { b } \right) \right| $$
$$\therefore A\left( \triangle ABC \right) =\frac { 3 }{ 2 } \left| \left( \bar { b } \times \bar { c } \right) +\left( \bar { b } \times \bar { c } \right) \right| $$
$$\left( \because \left( \bar { a } \times \bar { b } \right) =-\left( \bar { b } \times \bar { a } \right) \right) $$
$$\therefore A\left( \triangle ABC \right) =\frac { 3 }{ 2 } \left| 2\left( \bar { b } \times \bar { c } \right) \right| $$
$$\therefore A\left( \triangle ABC \right) =3\left| \left( \bar { b } \times \bar { c } \right) \right| $$ (2)
2) Area of triangle AOC is given by,
$$\therefore \left( \triangle AOC \right) =\frac { 1 }{ 2 } \left| \bar { OA } \times \bar { OC } \right| $$
$$\therefore \left( \triangle AOC \right) =\frac { 1 }{ 2 } \left| \bar { a } \times \bar { c } \right| $$
From equation (1),
$$A\left( \triangle AOC \right) =\frac { 1 }{ 2 } \left| \left( -2\bar { b } -3\bar { c } \right) \times \bar { c } \right| $$
$$\therefore A\left( \triangle AOC \right) =\frac { 1 }{ 2 } \left| -2\left( \bar { b } \times \bar { c } \right) -3\left( \bar { c } \times \bar { c } \right) \right| $$
$$\therefore A\left( \triangle AOC \right) =\frac { 2 }{ 2 } \left| \left( \bar { b } \times \bar { c } \right) \right| $$
$$\therefore A\left( \triangle AOC \right) =\left| \left( \bar { b } \times \bar { c } \right) \right| $$ (3)
Now, $$\frac { A\left( \triangle ABC \right) }{ A\left( \triangle AOC \right) } =\frac { 3\left| \left( \bar { b } \times \bar { c } \right) \right| }{ \left| \left( \bar { b } \times \bar { c } \right) \right| } $$
$$\frac { A\left( \triangle ABC \right) }{ A\left( \triangle AOC \right) } =3$$