Self Studies

Vector Algebra Test - 70

Result Self Studies

Vector Algebra Test - 70
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$\overrightarrow{a} = 2\hat{i} - \hat{j} + \hat{k}$$, $$\overrightarrow{b} = \hat{i} + 2\hat{j} - \hat{k}$$, $$\overrightarrow{c} = \hat{i} + \hat{j} - 2\hat{k}$$, then a vector in the plane of $$\hat{b}$$ and $$\hat{c}$$ whose projection on $$\hat{a}$$ is a magnitude of $$\sqrt{\frac{2}{3}}$$ is 
  • Question 2
    1 / -0
    Let $$\vec { p } $$ and $$\vec { q } $$ be the position vectors of the points $$P$$ and $$Q$$ respectively with respect to origin $$O$$. The points $$R$$ and $$S$$ divide $$PQ$$ internally and externally respectively in the ratio $$2:3$$. If $$\overrightarrow { OR } $$ and $$\overrightarrow { OS } $$ are perpendicular, then which one of the following is correct?
    Solution
    $$\vec{OR}=\dfrac{3p+2q}{3+2}=\dfrac{1}{5}(3p+2q)$$

    Given that $$\vec{OR}$$ and $$\vec{OS}$$ are perpendicular.

    $$\Rightarrow \vec{OR} \cdot \vec{OS}=0$$

    $$\Rightarrow \dfrac{1}{5}(3p+2q) \cdot (3p-2q)=0$$

    $$\Rightarrow 9|p^2|-4|q^2|=0$$

    $$\Rightarrow 9p^2=4q^2$$
  • Question 3
    1 / -0
    A unit vector a makes an angel $$\Pi /4$$ with the z-axis. If a+i+j is a unit vector, then a can be equal to  
    Solution
    Equation of z-axis = $$=0i+0j+\hat { k } $$
    a is unit vector at angel $$\Pi /4$$  
    $$\bar { a } .\bar { z } =\left| \bar { a }  \right| \left| \bar { z }  \right| \cos { \dfrac { \Pi  }{ 4 }  } $$
    Let $$a=xi+y\lambda +2\hat { k } $$
    $$z=\cos { \dfrac { \Pi  }{ 4 }  } \Rightarrow z=\frac { 1 }{ \sqrt { 2 }  } $$
    $$u=xi+yj+zk\quad =\quad \delta i+yj+\dfrac { 1 }{ \sqrt { 2 }  } k$$
    $${ x }^{ 2 }+{ y }^{ 2 }=\dfrac { 1 }{ 2 } $$
    $$a+i+j$$ is unit vector
    $$\left( x+1 \right) i+\left( y+1 \right) j+\dfrac { 1 }{ \sqrt { 2 }  } k$$ is unit vector
    $${ (x+1 })^{ 2 }+{ (y+1) }^{ 2 }=\dfrac { 1 }{ 2 } $$
    $${ (x+1 })^{ 2 }+{ (y+1) }^{ 2 }={ x }^{ 2 }+{ y }^{ 2 }$$
    $${ x }^{ 2 }={ (x+1 })^{ 2 }=1\quad \quad -x=x+1\\ a=-\dfrac { 1 }{ 2 } i-\dfrac { 1 }{ 2 } j+\dfrac { 1 }{ \sqrt { 2 }  } k\quad \quad x=-\dfrac { 1 }{ 2 }\quad  Similarly \quad y=-\dfrac { 1 }{ 2 }$$

  • Question 4
    1 / -0
    Let $$\vec{u},\ \vec{v},\ \vec{w}$$ be such that $$\left| \vec { u }  \right| =1$$,  $$\left| \vec { v }  \right| =2$$, $$\left| \vec { w }  \right| =3$$. If the projection of $$\vec{v}$$ along $$\vec{u}$$ is equal to projection of $$\vec{w}$$ along $$\vec{u}$$ and $$\vec{v}$$ and $$\vec{w}$$ are perpendicular to each other then $$\left| \bar { u } -\bar { v } +\bar { w }  \right|$$ equals-
    Solution

  • Question 5
    1 / -0
    If $$ABCDE$$ is a pentagon, then $$\vec {AB}+\vec {AE}+\vec {BC}+\vec {DC}+\vec {ED}+\vec {AC}$$ equals
    Solution

    In the pentagon ABCDE, join AC and AD.

    By triangle law,

    In $$\Delta ABC$$,

    $$\overrightarrow {AB}  + \overrightarrow {BC}  = \overrightarrow {AC} $$

    In $$\Delta ACD$$,

    $$\overrightarrow {AD}  + \overrightarrow {DC}  = \overrightarrow {AC} $$

    In $$\Delta AED$$,

    $$\overrightarrow {AE}  + \overrightarrow {ED}  = \overrightarrow {AD} $$

    Now,

    $$\overrightarrow {AB}  + \overrightarrow {AE}  + \overrightarrow {BC}  + \overrightarrow {DC}  + \overrightarrow {ED}  + \overrightarrow {AC}  = \left( {\overrightarrow {AB}  + \overrightarrow {BC} } \right) + \left( {\overrightarrow {AE}  + \overrightarrow {ED} } \right) + \overrightarrow {DC}  + \overrightarrow {AC} $$

    $$ = \overrightarrow {AC}  + \left( {\overrightarrow {AD}  + \overrightarrow {DC} } \right) + \overrightarrow {AC} $$

    $$ = \overrightarrow {AC}  + \overrightarrow {AC}  + \overrightarrow {AC} $$

    $$ = 3\overrightarrow {AC} $$

  • Question 6
    1 / -0
    Let $$\overline {a}, \overline {b}$$ be two noncollinear vectors. If $$\overline {OA}=(x+4y)\overline {a}+(2x+y+1)\overline {b}, \overline {OB}=(y-2x+2)\overline {a}+(2x-3y-1)\overline {b}$$ and $$3\overline {OA}=2\overline{OB}$$, then $$(x,y)=$$
    Solution

  • Question 7
    1 / -0
    The value of $$|\overrightarrow A  + \overrightarrow B  - \overrightarrow C  + \overrightarrow D |$$ can be zero if :-
    Solution

  • Question 8
    1 / -0
    The projection of $$\vec{a}=\hat{i}+2\hat{j}+3\hat{k}$$ on the vector $$\vec{b}=\hat{i}+2\hat{j}-\hat{k}$$ is?
    Solution
    The given vectors are $$\vec { a } =\hat { i } +2\hat { j } +3\hat { k }$$ and $$\vec { b } =\hat { i } +2\hat { j } -\hat { k }$$

    Let us first find the dot product of the given vectors as shown below:

    $$\vec { a } \cdot \vec { b } =(1\times 1)+(2\times 2)+(3\times -1)=1+4-3=5-3=2$$

    Now, we find the magnitude of the vector $$\vec { b }$$ as follows:

    $$\left| \vec { b }  \right| =\sqrt { { 1 }^{ 2 }+2^{ 2 }+(-1)^{ 2 } } =\sqrt { 1+4+1 } =\sqrt { 6 }$$

    We know that the projection of $$\vec { a }$$ on $$\vec { b }$$ is $$\dfrac { \vec { a } \cdot \vec { b }  }{ \left| \vec { b }  \right|  }$$, therefore, we have:

    $$\dfrac { \vec { a } \cdot \vec { b }  }{ \left| \vec { b }  \right|  } =\dfrac { 2 }{ \sqrt { 6 }  } =\dfrac { 2 }{ \sqrt { 2\times 3 }  } =\dfrac { 2 }{ \sqrt { 2 } \times \sqrt { 3 }  } =\dfrac { \sqrt { 2 }  }{ \sqrt { 3 }  } =\sqrt { \dfrac { 2 }{ 3 }  }$$  

    Hence, the projection of the vector $$\vec { a }$$ on $$\vec { b }$$ is $$\sqrt { \dfrac { 2 }{ 3 }  }$$.
  • Question 9
    1 / -0
    The set of values of $$'c'$$ for which the angle between the vectors $$(cx\hat{i}-6\hat{j}+3\hat{k})$$  and  $$(x\hat{i}-2\hat{j}+2cx\hat{k})$$ is acute for every $$x\in R$$  is
    Solution

  • Question 10
    1 / -0
    A vector $$\vec{a}$$ has components $$2$$ p and $$1$$ with respect to a rectangular cartesian system. This system is rotated through a certain angle about the origin in the counter clockwise sense. If, with respect to the new system, $$\vec{a}$$ components $$p+1$$ and $$1$$, then?
    Solution
    $$\textbf{Step-1: Find the magnitude of the given vector & simplify.}$$

                    $$\text{We know that,}$$

                    $$\text{The magnitude of the vector must remain same irrespective of the co-ordinate system.}$$

                    $$\implies\quad \left| \overline { a }  \right| =\left| { \overline { { a }^{ ' } }  } \right|$$

                    $$ \left| 2p\overset { \wedge  }{ i } +\overset { \wedge  }{ j }  \right| =\left| (p+1)\overset { \wedge  }{ { i }^{ ' } } +\overset { \wedge  }{ { j }^{ ' } }  \right| $$

                    $$\implies\quad \sqrt { { (2p) }^{ 2 }+{ 1 }^{ 2 } } =\sqrt { { (p+1) }^{ 2 }+{ 1 }^{ 2 } } $$

    $$\textbf{Step-2: Simplify the above results to get the required unknown.}$$

                    $$\text{After squaring on both sides we get,}$$

                    $$\implies\quad { 4p }^{ 2 }+1={ p }^{ 2 }+1+2p+1$$

                    $$\implies\quad { 4p }^{ 2 }+1={ p }^{ 2 }+2p+2$$

                    $$\implies\quad { 3 }p^{ 2 }-2p-1=0$$

                    $$\implies\quad { 3p }^{ 2 }-3p+p-1=0$$

                    $$\implies\quad 3p(p-1)+1(p-1)=0$$

                    $$\implies\quad (p-1)(3p+1)=0$$

                    $$\implies\quad p=1,\cfrac { -1 }{ 3 } $$

    $$\textbf{Hence, option - B is the correct answer.}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now