Question :- If $$\vec{a},\vec{b}$$ and $$\vec{c}$$ are three mutually perpendicular
vectors, then projection of vector $$\left ( l\dfrac{\vec{a}}{\left | \vec{a} \right |}+m\dfrac{\vec{b}}{\left | \vec{b} \right |}+n\dfrac{(\vec{a}\times \vec{b})}{\left | \vec{a}\times \vec{b} \right |} \right )$$
along bisector of sectors $$\vec{a}$$ and $$\vec{b}$$ may be given as?
Solution:-
We know for mutually perp. vectors.
$$\vec{a}\times \vec{b}=\vec{c}$$ $$\vec{b}\times \vec{c}=\vec{a}$$ $$\vec{c}\times \vec{a}=\vec{b}$$
$$\vec{a}.\vec{b}=\vec{b}.\vec{c}=\vec{c}.\vec{a}=0$$ and $$\left | \hat{a} \right |^{2}=1$$
Now, A vector parallel to bisector of angle between
vectors $$\vec{a}$$ and $$\vec{b}$$ is given as $$\vec{x}$$
$$\vec{x}=\dfrac{\vec{a}}{\left | \vec{a} \right |}+\dfrac{\vec{b}}{\left | \vec{b} \right |}=\hat{a}+\hat{b}$$ $$(\hat{a}=\hat{b}$$ = unit vectors)
say $$\vec{y}=\left ( l\dfrac{\vec{a}}{\left | \vec{a} \right |} +m\dfrac{\vec{b}}{\left | \vec{b} \right |}+n\dfrac{(\vec{a}\times \vec{b})}{\left | \vec{a}\times \vec{b} \right |}\right )$$
$$\vec{y}=\left ( l\hat{a}+m\hat{b}+n\dfrac{\vec{c}}{\left | \vec{c} \right |} \right )$$
$$\vec{y}=(l\hat{a}+m\hat{b}+n\hat{c})$$
Now projection of y along x is given as
$$=\vec{y}.\dfrac{\vec{x}}{\left | \vec{x} \right |}$$
$$=\vec{y}.\hat{x}$$
$$=(l\hat{a}+m\hat{b}+n\hat{c}).\left ( \dfrac{\hat{a}}{\sqrt{2}}+\dfrac{\hat{b}}{\sqrt{2}} \right )$$
$$=\dfrac{l}{\sqrt{2}}+\dfrac{m}{\sqrt{2}}$$
$$=\dfrac{l+m}{\sqrt{2}}$$
Ans (D) $$\dfrac{l+m}{\sqrt{2}}$$
Using $$\vec{x}=\hat{a}+\hat{b}$$
$$\hat{x}=\dfrac{\hat{a+\hat{b}}}{\left | \hat{a}+\hat{b} \right |}=\dfrac{1}{\sqrt{2}}(\hat{a}+\hat{b})$$
$$\left | \hat{a}+\hat{b} \right |^{2}=\left | \hat{a} \right |^{2}+\left | \hat{b} \right |^{2}+2\hat{a}.\hat{b}$$
$$= 1+1+0=2$$