Self Studies

Vector Algebra Test - 71

Result Self Studies

Vector Algebra Test - 71
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The vector $$(\hat {i}\times \vec {a}.\vec {b})\hat {i} + (\hat {j} \times \vec {a}.\vec {b})\hat {j} + (\hat {k} \times \vec {a} . \vec {b})\hat {k}$$ is equal to
  • Question 2
    1 / -0
    The x-y plane divides the line joining the points $$(-1, 3, 4)$$ and $$(2, -5, 6)$$:
    Solution

    Let $$xy$$ plane divides the line joining the points $$A\left( { - 1,3,4} \right)$$ and $$B\left( {2, - 5,6} \right)$$ in the ratio $$k:1$$.

    $$x = \cfrac{{2k - 1}}{{k + 1}}$$

    $$y = \cfrac{{ - 5k + 3}}{{k + 1}}$$

    $$z = \cfrac{{6k - 4}}{{k + 1}}$$

    Since the plane is $$xy$$ plane, so $$z = 0$$,

    $$\cfrac{{6k - 4}}{{k + 1}} = 0$$

    $$6k - 4 = 0$$

    $$6k = 4$$

    $$k = \cfrac{4}{6}$$

    $$k = \cfrac{2}{3}$$

    Therefore, the ratio is $$2:3$$ internally.

  • Question 3
    1 / -0
    If $$\vec {a},\vec {b}$$ and $$\vec {c}$$ are those mutually perpendicular vectors, then the projection of the vector $$\left( l \dfrac{\bar {a}}{|\bar {a}|}+m\dfrac{\bar {b}}{|\bar {b}|}+n\dfrac{(\bar {a}\times \bar {b})}{|\bar {a} \times \bar {b}|}\right)$$ along bisector of vectors $$\vec {a}$$ and $$\vec {a}$$ may be given as  ?
    Solution
    Question :- If $$\vec{a},\vec{b}$$ and $$\vec{c}$$ are three mutually perpendicular
    vectors, then projection of vector $$\left ( l\dfrac{\vec{a}}{\left | \vec{a} \right |}+m\dfrac{\vec{b}}{\left | \vec{b} \right |}+n\dfrac{(\vec{a}\times \vec{b})}{\left | \vec{a}\times \vec{b} \right |} \right )$$
    along bisector of sectors $$\vec{a}$$ and $$\vec{b}$$ may be given as?
    Solution:-
    We know for mutually perp. vectors.
    $$\vec{a}\times \vec{b}=\vec{c}$$  $$\vec{b}\times \vec{c}=\vec{a}$$   $$\vec{c}\times \vec{a}=\vec{b}$$
    $$\vec{a}.\vec{b}=\vec{b}.\vec{c}=\vec{c}.\vec{a}=0$$ and $$\left | \hat{a} \right |^{2}=1$$
    Now, A vector parallel to bisector of angle between
    vectors $$\vec{a}$$ and $$\vec{b}$$ is given as $$\vec{x}$$
    $$\vec{x}=\dfrac{\vec{a}}{\left | \vec{a} \right |}+\dfrac{\vec{b}}{\left | \vec{b} \right |}=\hat{a}+\hat{b}$$  $$(\hat{a}=\hat{b}$$ = unit vectors)
    say $$\vec{y}=\left ( l\dfrac{\vec{a}}{\left | \vec{a} \right |} +m\dfrac{\vec{b}}{\left | \vec{b} \right |}+n\dfrac{(\vec{a}\times \vec{b})}{\left | \vec{a}\times \vec{b} \right |}\right )$$
    $$\vec{y}=\left ( l\hat{a}+m\hat{b}+n\dfrac{\vec{c}}{\left | \vec{c} \right |} \right )$$
    $$\vec{y}=(l\hat{a}+m\hat{b}+n\hat{c})$$
    Now projection of y along x is given as
    $$=\vec{y}.\dfrac{\vec{x}}{\left | \vec{x} \right |}$$
    $$=\vec{y}.\hat{x}$$
    $$=(l\hat{a}+m\hat{b}+n\hat{c}).\left ( \dfrac{\hat{a}}{\sqrt{2}}+\dfrac{\hat{b}}{\sqrt{2}} \right )$$
    $$=\dfrac{l}{\sqrt{2}}+\dfrac{m}{\sqrt{2}}$$
    $$=\dfrac{l+m}{\sqrt{2}}$$
    Ans (D) $$\dfrac{l+m}{\sqrt{2}}$$

    Using $$\vec{x}=\hat{a}+\hat{b}$$
    $$\hat{x}=\dfrac{\hat{a+\hat{b}}}{\left | \hat{a}+\hat{b} \right |}=\dfrac{1}{\sqrt{2}}(\hat{a}+\hat{b})$$
    $$\left | \hat{a}+\hat{b} \right |^{2}=\left | \hat{a} \right |^{2}+\left | \hat{b} \right |^{2}+2\hat{a}.\hat{b}$$
    $$= 1+1+0=2$$

  • Question 4
    1 / -0
    $$\bar{a}, \bar{b}, \bar{c}$$ are mutually perpendicular unit vectors and $$\bar{d}$$ is a unit vector equally inclined to each other of $$\bar{a}, \bar{b}$$ and $$\bar{c}$$ at an angle of $$60^o$$. Then $$|\bar{a}+\bar{b}+\bar{c}+\bar{d}|^2=?$$
    Solution

    $${\textbf{Step -1: Solve the given equations}}{\textbf{.}}$$
                   $$\left| {\overline a } \right| = \left| {\overline b } \right| = \left| {\overline c } \right| = \left| {\overline d } \right| = 1$$
                   $${\left| {\overrightarrow a  + \overrightarrow b  + \overrightarrow c  + \overrightarrow d } \right|^2} = {\left| {\overrightarrow a } \right|^2} + {\left| {\overrightarrow b } \right|^2} + {\left| {\overrightarrow c } \right|^2} + {\left| {\overrightarrow d } \right|^2} + 2\left( {\overrightarrow {a.} \overrightarrow b  + \overrightarrow {a.} \overrightarrow {c.}  + \overrightarrow {a.} \overrightarrow {d.}  + \overrightarrow {b.} \overrightarrow {c.}  + \overrightarrow {b.} \overrightarrow {a.}  + \overrightarrow {c.} \overrightarrow {d.} } \right)$$
                    $$ = 1 + 1 + 1 + 1 + 2\left[ {\left| {\overrightarrow a } \right|\left| {\overrightarrow b } \right|\cos 90^\circ } \right] + \left[ {\left| {\overrightarrow a } \right|\left| {\overrightarrow c } \right|\cos 90^\circ } \right] + \left[ {\left| {\overrightarrow a } \right|\left| {\overrightarrow d } \right|\cos 60^\circ } \right]$$
                   $$ + \left[ {\left| {\overrightarrow b } \right|\left| {\overrightarrow c } \right|\cos 90^\circ } \right] + \left[ {\left| {\overrightarrow b } \right|\left| {\overrightarrow d } \right|\cos 60^\circ } \right] + \left[ {\left| {\overrightarrow a } \right|\left| {\overrightarrow d } \right|\cos 60^\circ } \right]$$
                   $$ = 4 + 2\left[ {0 + 0 + 1 \times \dfrac{1}{2} + 0 + 1 \times 1 \times \dfrac{1}{2} + 1 \times 1 \times \dfrac{1}{2}} \right]$$
                   $$ = 4 + 2\left[ {\dfrac{1}{2} + \dfrac{1}{2} + \dfrac{1}{2}} \right]$$
                   $$ = 4 + 2 \times \dfrac{3}{2}$$
                   $$ = 4 + 3$$
                   $$ = 7$$
    $${\textbf{Hence, the value of }}{\mathbf{\left| {\overrightarrow a  + \overrightarrow b  + \overrightarrow c  + \overrightarrow d } \right|^2} = 7.}$$
  • Question 5
    1 / -0
    In a plane at a given point $$\vec {A}$$ exist is vertically upward and $$\vec {B}$$ at point in north direction then find the direction at $$\vec {A}\times \vec {B}$$
    Solution

  • Question 6
    1 / -0
    Let $$\hat{a}, \hat{b}$$ and $$\hat{c}$$ be three unit vectors such that $$\hat{a}=\hat{b}+(\hat{b}\times \hat{c})$$, then the possible value(s) of $${|\hat{a}+\hat{b}+\hat{c}|}^{2}$$ can be:
    Solution

  • Question 7
    1 / -0
    If $$D\vec A = \vec a,$$  $$A\vec B = \vec b$$  and $$C\vec B = k\vec a$$ where $$k < 0$$ and X, Y are the mid-points of DB & DC respectively, such that $$\left| {\vec a} \right| = 17\& \left| {X\vec Y} \right| = 4$$, then k equal to -
    Solution

  • Question 8
    1 / -0
    $$3\overline {OD}  + \overline {DA}  + \overline {DB}  + \overline {DC}  = $$
    Solution

  • Question 9
    1 / -0
    Forces $$3 \vec { OA } $$, $$5 \vec { OB } $$ act along OA and OB. If their resultant passes through C on AB, then :

    Solution
    Draw $$ON$$ perpendicular to $$AB$$
    Let $$\hat{i}$$ be the unit vector along $$ON$$
    The resultant force $$\overrightarrow{R}=3\overrightarrow{A}+5\overrightarrow{B}$$         ......$$\left(1\right)$$
    The angles between $$\hat{i}$$ and the forces $$\overrightarrow{R}$$, $$3\overrightarrow{A}$$ and $$5\overrightarrow{B}$$ are $$\angle{CON},\angle{AON}$$ and $$\angle{BON}$$ respectively.
    $$\overrightarrow{R}.\hat{i}=3\overrightarrow{A}.\hat{i}+5\overrightarrow{B}.\hat{i}$$
    $$\overrightarrow{R}.1.\cos{\angle{CON}}=3.\overrightarrow{OA}.1.\cos{\angle{AON}}+5\overrightarrow{OB}.1.\cos{\angle{BON}}$$
    $$\overrightarrow{R}.\dfrac{ON}{OC}=3\overrightarrow{OA}\times \dfrac{ON}{OA}+5\overrightarrow{OB}\times \dfrac{ON}{OB}$$
    $$\Rightarrow \dfrac{\overrightarrow{R}}{OC}=3+5$$
    $$\Rightarrow \overrightarrow{R}=8\overrightarrow{OC}$$
    We know that $$\overrightarrow{OA}=\overrightarrow{OC}+\overrightarrow{CA}$$
    $$\Rightarrow 3\overrightarrow{OA}=3\overrightarrow{OC}+3\overrightarrow{CA}$$      .......$$\left(1\right)$$by multiplying the complete equation by $$3$$
    We know that $$\overrightarrow{OB}=\overrightarrow{OC}+\overrightarrow{CB}$$
    $$\Rightarrow 5\overrightarrow{OB}=5\overrightarrow{OC}+5\overrightarrow{CB}$$      .......$$\left(2\right)$$by multiplying the complete equation by $$5$$          
    Eqn$$\left(1\right)+\left(2\right)$$
    $$\Rightarrow 3\overrightarrow{OA}+5\overrightarrow{OB}=8\overrightarrow{OC}+3\overrightarrow{CA}+5\overrightarrow{CB}$$
    $$\Rightarrow \overrightarrow{R}=8\overrightarrow{OC}+3\overrightarrow{CA}+5\overrightarrow{CB}$$
    $$\Rightarrow 8\overrightarrow{OC}=8\overrightarrow{OC}+3\overrightarrow{CA}+5\overrightarrow{CB}$$
    $$\Rightarrow \left|3\overrightarrow{CA}\right|=\left|5\overrightarrow{CB}\right|$$
    $$\therefore 3AC=5CB$$
  • Question 10
    1 / -0
    The angles of a triangles whose two sides are represented by vectors $$\sqrt(\vec { a } \times \vec { b })$$ and $$\vec{b}-(\vec { a }  \vec { b })\vec{a}$$ are in the ratio
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now