Self Studies

Vector Algebra Test - 72

Result Self Studies

Vector Algebra Test - 72
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Given unit vectors  $$\hat {m}, \hat {n}$$ and $$\hat {p}$$ such that $$\left( \widehat { \hat { m } \hat { n }  }  \right) =\hat { p } \widehat {  } \left( \hat { m } \times \hat { n }  \right) =\alpha$$ then the value of $$[\hat { n } \hat { p } \hat { m } ]$$ in terms of $$\alpha$$ is :
    Solution

  • Question 2
    1 / -0
    The position vector of two points A and B are 6a+2b and a-3b. If a point C divides AB in the ratio 3 : 2, then the position vector of C is
    Solution

  • Question 3
    1 / -0
    $$\left| {\overline x } \right| = \left| {\overline y } \right| = 1,\,\overline x  \bot \overline y ,\,\left| {\overline x  + \overline y } \right| = $$
    Solution

  • Question 4
    1 / -0
    The position vector of a point $$C$$ with respect to $$B$$ is $$\hat { i } + \hat { j }$$ and that of B with respect to A is $$\hat { i } - \hat { j }$$. The position vector of $$C$$ with respect to $$A$$ is
  • Question 5
    1 / -0
    D,E and F are the mid-points of the sides BC,CA and AB respectively of $$\Delta ABC$$ and G is the centroid of the triangle, then $$\vec{GD}+\vec{GE}+\vec{GF}=$$
    Solution

  • Question 6
    1 / -0
    If  $$\vec { u } =\vec { a } -\vec { b } ~;\vec{ v } =\vec { a } +\vec { b } ~~\&~ |\vec { a }| =|\vec { b }| =2,$$ then $$\left| \vec { u } \times \vec { \upsilon  }  \right| $$ is equal to:
    Solution

  • Question 7
    1 / -0
    Vector equation of the plane $$\vec{r}=\hat{i}-\hat{j}+\lambda(\hat{i}+\hat{j}+\hat{k})+\mu(\hat{i}+2\hat{j}+3\hat{k})$$ in the scalar dot product from is
    Solution

  • Question 8
    1 / -0
    $$\vec{r}.\hat{i}=2\vec{r}.\hat{j}=4\vec{r}.\hat{k}$$ and $$\left|\vec{r}\right|=\sqrt{84}$$, then $$\left|\vec{r}.\left(2\hat{i}-3\hat{j}+\hat{k}\right)\right|$$ is equal to 
    Solution

  • Question 9
    1 / -0
    If $$a,b$$ and $$c$$ are position vector of $$A,B$$ and $$C$$ respectively of $$\triangle ABC$$ and if $$|a-b|=4,|b-c|=2, |c-a|=3$$, then the distance between the centroid and incentre of $$\triangle ABC$$ is 
    Solution

  • Question 10
    1 / -0
    If the position vectors of $$A, B, C, D$$ are $$3\hat{i} + 2\hat{j} + \hat{k}, 4\hat{i} + 5\hat{j} + 5\hat{k}, 4\hat{i} + 2\hat{j} - 2\hat{k}, 6\hat{i} + 5\hat{j} - \hat{k}$$ respectively then the position vector of the point of intersection of $$\bar{AB}$$ and $$\bar{CD}$$ is
    Solution
    $$ \begin{aligned} \overrightarrow{A B} &=\vec{b}-\vec{a} \\ &=(4 i+5 \hat{\jmath}+5 \hat{k})-(3 \hat{i}+2 \hat{\jmath}+\hat{k}) \\ &=\hat{\imath}+3 \hat{\jmath}+4 \hat{k} , and \end{aligned} $$
    $$\begin{aligned} \overrightarrow{C D} &=\vec{d}-\vec{c} \\ &=(6 \hat{\imath}+5 \hat{\jmath}-\hat{k})-(4 \hat{\imath}+2 \hat{\jmath}-2 \hat{k}) \\ &=\overrightarrow{2} \hat{\imath}+3 \hat{\jmath}+\hat{k} \\ \text { Let } \overrightarrow{A B} & \text { and } \overrightarrow{C D} \text { intersect at } \vec{P} . \\ \text { Line } A B=(3 i+2 j+\hat{k})+\lambda(i+3 \hat{j}+4 \hat{k}) & \text { and } \end{aligned}$$
    Line $$C D=(4 i+2 \hat{\imath}-2 \hat{k})+\mu(2 \hat{i}+3 \hat{j}+\hat{k})$$
    W.r.t. line $$A_{0}$$,
    $$P=(3+\lambda, 2+3 \lambda, 1+4 \lambda)$$
    and $$w \cdot r \cdot t \cdot$$ line $$C D$$,
    $$P=(4+2 \mu, 2+3 \mu,-2+\mu)$$
    Comparing both points,
    $$\begin{aligned} \Rightarrow & 3+\lambda^{\prime}=4+2 \mu, \\ & 2+3 \lambda=2+3 \mu \\ & 1+4 \lambda=-2+\mu \end{aligned}$$
    Solving these equs.,
    $$\therefore \vec{p}=2 \hat{\imath}-\hat{\jmath}-3 \hat{k}$$
    $$\therefore$$ option $$D$$ is correct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now