$$
\begin{aligned}
\overrightarrow{A B} &=\vec{b}-\vec{a} \\
&=(4 i+5 \hat{\jmath}+5 \hat{k})-(3 \hat{i}+2 \hat{\jmath}+\hat{k}) \\
&=\hat{\imath}+3 \hat{\jmath}+4 \hat{k} , and
\end{aligned}
$$
$$\begin{aligned} \overrightarrow{C D} &=\vec{d}-\vec{c} \\ &=(6 \hat{\imath}+5 \hat{\jmath}-\hat{k})-(4 \hat{\imath}+2 \hat{\jmath}-2 \hat{k}) \\ &=\overrightarrow{2} \hat{\imath}+3 \hat{\jmath}+\hat{k} \\ \text { Let } \overrightarrow{A B} & \text { and } \overrightarrow{C D} \text { intersect at } \vec{P} . \\ \text { Line } A B=(3 i+2 j+\hat{k})+\lambda(i+3 \hat{j}+4 \hat{k}) & \text { and } \end{aligned}$$
Line $$C D=(4 i+2 \hat{\imath}-2 \hat{k})+\mu(2 \hat{i}+3 \hat{j}+\hat{k})$$
W.r.t. line $$A_{0}$$,
$$P=(3+\lambda, 2+3 \lambda, 1+4 \lambda)$$
and $$w \cdot r \cdot t \cdot$$ line $$C D$$,
$$P=(4+2 \mu, 2+3 \mu,-2+\mu)$$
Comparing both points,
$$\begin{aligned} \Rightarrow & 3+\lambda^{\prime}=4+2 \mu, \\ & 2+3 \lambda=2+3 \mu \\ & 1+4 \lambda=-2+\mu \end{aligned}$$
Solving these equs.,
$$\therefore \vec{p}=2 \hat{\imath}-\hat{\jmath}-3 \hat{k}$$
$$\therefore$$ option $$D$$ is correct.