Self Studies

Vector Algebra Test - 75

Result Self Studies

Vector Algebra Test - 75
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$ \sum_{i=1}^{n} \vec{a}_{i}=\vec{0} $$ where $$ \left|\vec{a}_{i}\right|=1 \forall i,  $$ then the value of $$ \sum_{1 \leq i<j \leq n} \vec{a}_{i} \cdot \vec{a}_{j}  $$ is
    Solution

  • Question 2
    1 / -0
    In parallelogram ABCD, $$|\overline { AB } |=a,|\overline { AD } |=b$$ and $$|\overline { AC } |=c$$ then $$\overline { DB } ,\overline { AB } $$ has the value
    Solution

  • Question 3
    1 / -0
    $$|\hat{i} \times p|^2 + |\hat{j} \times p|^2 +|\hat{k} \times p|^2$$ is equal to
    Solution

  • Question 4
    1 / -0
    If the vectors $$\vec{a}$$ , $$\vec{b}$$ , $$\vec{c}$$ satisfying $$\vec{a}$$ + $$\vec{b}$$ + 2$$\vec{c}$$ = 0 . If $$\left | \vec{a} \right |$$ = 1 , $$\left | \vec{b} \right |$$ = 4 , $$\left | \vec{c} \right |$$ = 2 , then $$\vec{a}.\vec{b}$$ + $$\vec{b}.\vec{c}$$ + $$\vec{c}.\vec{a}$$ = 
    Solution

  • Question 5
    1 / -0
    A stone projected vertically upwards raises 's' feets in 't' seconds where $$_{ S }=112t-{ 16t }^{ 2 }$$ then the maximum height it reached is
    Solution
    $$s=112 t-16 t^{2}$$
    for maximum height
    $$\dfrac{d s}{d t}=0$$
    $$\dfrac{d\left(112 t-16 t^{2}\right)}{d t}=0$$
    $$\dfrac{d(112 t)}{d t}-\dfrac{d\left(16 t^{2}\right)}{d t}=0$$
    $$112-16(2) t^{2-1}=0$$
    $$112-32 t=0$$
    $$32 t=112$$
    $$t=\dfrac{112}{32}=\dfrac{28}{8}=\frac{7}{2}$$
    $$\therefore$$ maximum height
    $$=112\left(\dfrac{7}{2}\right)-16\left(\dfrac{7}{2}\right)^{2}$$
    $$=56 \times 7-4 \times 49$$
    $$=392-196$$
    $$=196 \mathrm{ft}$$
  • Question 6
    1 / -0
    The position vector of A is $$2\vec { i } +3\vec { j } +4\vec { k } $$$$\vec { AB } =5\vec { i } +7\vec { j } +6\vec { k } $$, then the position vector of B is
  • Question 7
    1 / -0
    The projection of the join of the point (3, 4, 2), (5, 1, 8) on the line whose d.c.'s are $$\left( \dfrac { 2 }{ 7 } ,-\dfrac { 3 }{ 7 } ,\dfrac { 6 }{ 7 }  \right) $$ is 
    Solution

  • Question 8
    1 / -0
    Let OAB be a regular triangle with side unity (o being otogin). Also M, N are the points of intersection of AB, M being closer to A and N closer to B. Position vectors of A, B, M and N are $$\vec { a } ,\vec { b } ,\vec { m } $$ and $$\vec { n } $$ respectively. Which of the following hold (s) good ?
  • Question 9
    1 / -0
    Given $$\overline { a } = x \hat { i } + y \hat { j } + 2 \hat { k } , \overline { b } = \hat { i } - \hat { j } + \hat { k } , \overline { c } = \hat { i } + 2 \hat { j } ;( \overline { a } \hat {  } \overline { b } ) = \pi / 2 , \overline { a } .\overline { c } = 4$$ then
    Solution

  • Question 10
    1 / -0
    If $$\bar { a } ,\bar { b } ,\bar { c } $$ are position vectors of the points A,B,C respectively such that $$9\bar { a } -7\bar { b } -2\bar { c } =\bar { 0 } $$ then point B divides AC in the ratio.....
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now