Self Studies

Three Dimensional Geometry Test - 13

Result Self Studies

Three Dimensional Geometry Test - 13
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The angle between the lines $$2x=3y=-z$$ and $$6x=-y=-4z$$ is 
    Solution
    Direction ratios of line $$2x=3y=-z$$ which can be written as $$\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{-1}$$ are  $$\left(\dfrac{1}{2},\dfrac{1}{3},-1\right)$$ and 
    Direction ratios of line $$6x=-y=-4z$$ which can be written as $$\frac{x}{\frac{1}{6}}=\frac{y}{-1}=\frac{z}{-\frac{1}{4}}$$  are  $$\left(\dfrac{1}{6},-1,-\dfrac{1}{4}\right).$$
    Dot product of the direction ratio of the two line $$=\dfrac{1}{2}\times\dfrac{1}{6}+\dfrac{1}{3}\times(-1)+(-1)\times(-\dfrac{1}{4})$$
    $$=\dfrac{1}{12}-\dfrac{1}{3}+\dfrac{1}{4}$$
    $$=0$$
    So, angle between the lines is $$90^\circ.$$
    Hence, B is the correct option.
  • Question 2
    1 / -0
    If a line makes an angle of $${\pi }/{4}$$ with the positive direction of each of $$x$$-axis and $$y$$-axis, then the angle that the line makes with the positive direction of the $$z$$-axis is
    Solution

    Since line makes an angle of $$\displaystyle \dfrac { \pi  }{ 4 } $$ with positive direction of each of $$x$$-axis and $$y$$-axis, therefore $$\displaystyle \alpha =\dfrac { \pi  }{ 4 } ,\beta =\dfrac { \pi  }{ 4 } $$

    We know that, 

    $$\cos ^{ 2 }{ \alpha  } +\cos ^{ 2 }{ \beta  } +\cos ^{ 2 }{ \gamma  } =1$$

    $$\displaystyle \\ \Rightarrow \cos ^{ 2 }{ \dfrac { \pi  }{ 4 }  } +\cos ^{ 2 }{ \dfrac { \pi  }{ 4 }  } +\cos ^{ 2 }{ \gamma  } =1$$

    $$\displaystyle \Rightarrow \dfrac { 1 }{ 2 } +\dfrac { 1 }{ 2 } +\cos ^{ 2 }{ \gamma  } =1$$

    $$\Rightarrow \cos ^{ 2 }{ \gamma  } =0$$

    $$\Rightarrow \gamma ={ 90 }^{ 0 }$$

  • Question 3
    1 / -0
    The line passing through the points $$(5,1,a)$$ and $$(3,b,1)$$ crosses the $$yz$$-plane at the point $$\left (0,\dfrac {17}{2}, \dfrac {-13}{2}\right)$$, then 
    Solution
    Equation of line passing through $$(5,1,a)$$ and $$(3,b,1)$$ is 

    $$ \displaystyle \dfrac { x-5 }{ 2 } =\dfrac { y-1 }{ 1-b } =\dfrac { z-a }{ a-b } =\lambda $$

    If line crosses $$yz$$-plane $$i.e.,x=0$$

    $$x=2\lambda +5=0$$ 

    $$ \displaystyle \Rightarrow \lambda =-\dfrac { 5 }{ 2 } ,$$

    Since, $$ \displaystyle y=\lambda \left( 1-b \right) +1\Rightarrow \dfrac { 17 }{ 2 } =\dfrac { -5 }{ 2 } \left( 1-b \right) +1\Rightarrow b=4$$

    Also, $$ \displaystyle z=\lambda \left( a-1 \right) +a\Rightarrow-\dfrac { 13 }{ 2 } =\dfrac { -5 }{ 2 } \left( a-1 \right) +a\Rightarrow a=11$$
  • Question 4
    1 / -0
    A line $$AB$$ in three-dimensional space makes angles $$45^{\mathrm{o}}$$ and $$120^{\mathrm{o}}$$ with the positive $$\mathrm{x}$$-axis and the positive $$\mathrm{y}$$-axis respectively. lf $$AB$$ makes an acute angle $$e$$ with the positive $$\mathrm{z}$$-axis, then $$e$$ equals
    Solution
    The angle made by line $$AB$$ with $$x$$ axis is $$45^{0}$$
    The angle made by line $$AB$$ with $$y$$ axis is $$120^{0}$$

    Let the angle made by line $$AB$$ with $$z$$ axis is $$\theta$$
    We have $$\cos^{2}{(45)} +\cos^{2}{(120)}+\cos^{2}{\theta}=1$$

    $$\Rightarrow cos^{2}{\theta}=1-\dfrac{1}{2}-\dfrac{1}{4}=\dfrac{1}{4}$$

    Given that $$\theta$$ is accute
    So we get $$cos\theta=\dfrac{1}{2}$$ 
    $$\Rightarrow \theta=60^{0}$$
    Therefore option $$B$$ is correct
  • Question 5
    1 / -0
    A line in the 3-dimensional space makes an angle $$\theta \left(0 < \theta \leq \dfrac {\pi}{2}\right)$$ with both the x and y axes, then the set of all values of $$\theta$$ is the interval :
    Solution
    Sum of square of direction cosines is $$1$$.
    Lets assume $$\alpha $$ is the angle with $$x$$, $$\beta$$ with $$y$$ and $$\gamma$$ with $$z$$.

    $$\alpha,\beta,\gamma \in \left[0,\dfrac\pi2\right]$$
    Now,
    $$\cos^2\alpha+\cos^2\beta+\cos^2\gamma = 1$$
    But it is given that, $$\alpha = \beta = \theta$$

    $$\therefore \cos^2\theta + \cos^2\theta + \cos^2\gamma = 1$$
    $$\Rightarrow 2\cos^2\theta = 1-\cos^2\gamma$$

    $$\Rightarrow = \cos^2\theta = \dfrac{\sin^2\gamma}2$$

    $$\Rightarrow \cos\theta = \dfrac{\sin\gamma}{\sqrt2}$$

    As $$\gamma \in \left[0,\dfrac\pi2\right]$$, then $$\theta \in \left[\dfrac\pi4,\dfrac\pi2\right]$$
  • Question 6
    1 / -0
    A line makes the same angle $$\Theta$$, with each of the $$\mathrm{x}$$ and $$\mathrm{z}$$ axis. If the angle $$\beta$$, which it makes with $$\mathrm{y}$$-axis, is such that $$\sin^{2}\beta=3\sin_{\Theta}^{2}$$, then $$\cos^{2}\Theta$$ equals: 
    Solution
    A line makes angle $$\theta $$ with x-axis and z axis and $$\beta $$ with y-axis
    $$\therefore l=\cos { \theta  } ,m=\cos { \beta  } ,n=\cos { \theta  } $$ 
    we know that $${ l }^{ 2 }+{ m }^{ 2 }+{ n }^{ 2 }=1$$
    $$\Rightarrow \cos ^{ 2 }{ \theta  } +\cos ^{ 2 }{ \beta  } +\cos ^{ 2 }{ \theta  } =1\Rightarrow 2\cos ^{ 2 }{ \theta  } =1-\cos ^{ 2 }{ \beta  } $$
    $$\Rightarrow 2\cos ^{ 2 }{ \theta  } =\sin ^{ 2 }{ \beta  } $$   ...(1)
    But $$\sin ^{ 2 }{ \beta  } =3\sin ^{ 2 }{ \theta  } $$  ...(2)
    From (1) and (2)
    $$3\sin ^{ 2 }{ \theta  } =2\cos ^{ 2 }{ \theta  } \Rightarrow 3\left( 1-\cos ^{ 2 }{ \theta  }  \right) =2\cos ^{ 2 }{ \theta  } \\ \Rightarrow 3-3\cos ^{ 2 }{ \theta  } =2\cos ^{ 2 }{ \theta  } \Rightarrow 3=5\cos ^{ 2 }{ \theta  } $$
    $$\displaystyle\Rightarrow\cos ^{ 2 }{ \theta  } =\frac { 3 }{ 5 } $$
  • Question 7
    1 / -0
    A line with positive direction cosines passes through the point $$P(2, -1, 2)$$ and makes equal angles with the coordinate axes. The line meets the plane $$2x + y + z = 9$$ at point $$Q$$. The length of the line segment $$PQ$$ equals
    Solution

     $$D.\mathrm{C}$$ of the line are $$\displaystyle \dfrac{1}{\sqrt{3}}$$ , $$\displaystyle \dfrac{1}{\sqrt{3}}$$ , $$\displaystyle \dfrac{1}{\sqrt{3}}$$

    Any point on the line at a distance $$t$$ from $${P}(2, -1,2)$$ is $$\left (2+\displaystyle \dfrac{{t}}{\sqrt{3}}, -1+\dfrac{{t}}{\sqrt{3}}, 2+\dfrac{{t}}{\sqrt{3}}\right)$$ 

    which lies on $$2x+y+z=9$$.

    $$\Rightarrow t=\sqrt 3$$

  • Question 8
    1 / -0
    If the lines $$\dfrac{x-2}{1}=\dfrac{y-3}{1}=\dfrac{z-4}{-k}$$ and $$\dfrac{x-1}{k}=\dfrac{y-4}{2}=\dfrac{z-5}{1}$$ are coplanar, then $$k$$ can have 
    Solution
    We have, $$
    \left|\begin{array}{lll}
    1 & -1 & -1\\
    1 & 1 & -k\\
    k & 2 & 1
    \end{array}\right|=0
    $$

    $$\Rightarrow  1(1+2k)+1(1+k^{2})-1(2-k)=0$$

    $$
    \Rightarrow k^{2}+1+2k+1-2+k=0
    $$

    $$
    \Rightarrow k^{2}+3k=0
    $$

    $$\Rightarrow (k)(k+3)=0$$

    Thus $$k$$ has $$2$$ values.
  • Question 9
    1 / -0

    If the straight lines $$\displaystyle \dfrac{x-1}{2}=\dfrac{y+1}{K}=\dfrac{z}{2}$$ and $$\displaystyle \dfrac{x+1}{5}=\dfrac{y+1}{2}=\dfrac{z}{K}$$ are coplanar, then the plane(s) containing these two lines is(are)

    Solution
    Two straight lines
    $$\dfrac {x-1}{2}=\dfrac {y+1}{K}=\dfrac {z}{2}$$ and $$\dfrac {x+1}{5}=\dfrac {y+1}{2}=\dfrac {z}{K}$$ are co-planar, then we get

    $$\begin{vmatrix} 2& K & 2 \\5& 2 & K\\ 2 & 0 & 0\end{vmatrix}=0$$

    $$\Rightarrow K^2=4\Rightarrow K=\pm 2$$

    For $$K=2$$, the plane $$y+1=z$$ is common in both lines.

    For $$K=-2$$, family of plane containing first line is $$x+y+\lambda (x-z-1)=0$$

    Point $$(-1, -1, 0)$$ must satisfy $$\lambda$$.

    $$\Rightarrow -2+\lambda(-2)=0\Rightarrow \lambda=-1$$

    $$\Rightarrow y+z+1=0$$

    $$\Rightarrow y+z=-1$$
  • Question 10
    1 / -0
    The points with position vectors $$60 \widehat{i} + 3 \widehat{j}$$, $$40 \widehat{i} - 8 \widehat{j}$$, $$a\widehat{i} -52\widehat{j}$$ are collinear if
    Solution
    Three points $$A(\vec{a}), B (\vec{b}), C(\vec{c})$$ are collinear if $$\vec{AB} || \vec{AC}$$

    $$\vec{AB} = - 20 \widehat{i} - 11 \widehat{j}$$
    $$\vec{AC} = (a - 60) \widehat{i} - 55 \widehat{j}$$

    $$\Rightarrow \vec{AB} || \vec{AC} $$
    $$\Rightarrow \displaystyle \dfrac{a - 60}{- 20 } $$$$= \dfrac{-55}{-11}$$ 
    $$\Rightarrow a = - 40$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now