Self Studies

Three Dimensional Geometry Test - 15

Result Self Studies

Three Dimensional Geometry Test - 15
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$P$$ is a point on the line passing through the point $$A$$ with position vector $$2\overline{i}+\overline{j}-3\overline{k}$$ and parallel to $$\overline{i}+2\overline{j}+\overline{k}$$ such that $$AP=2\sqrt{6}$$ then the position vector of $$P$$ is
    Solution
    $$P\cdot V\ of\ P= (2+t)\hat{i}+(1+2t)\hat{j}+(-3+t)\hat{k}$$
    $$P\cdot V\ of\ A= (2,1,-3)$$
    $$\left | \overrightarrow{AP} \right |= \sqrt{t^{2}+4t^{2}+t^{2}}$$
    $$2\ \sqrt{6}= t\sqrt{6}$$
    $$\Rightarrow t = 2$$
    $$P= 4\hat{i}+5\hat{j}-\hat{k}$$
  • Question 2
    1 / -0
    Cosine of the angle between two diagonals of a cube is equal to
    Solution
    Let 0, one vertex of a cube, be the origin and three edges through O be the coordinate axes. The four diagonals are Op, AA', BB' and CC'. Let a be the length of each edge. Then the coordinates of P, A, A' are (a, a, a), (a, 0, 0), (0, a, a). 
    The direction ratios of OP are a, a, a.
    The direction cosines of OP are
    $$\displaystyle \frac{a}{a \sqrt 3}, \frac{a}{a \sqrt 3}, \frac{a}{a \sqrt 3}$$ i.e., $$\displaystyle \frac{1}{\sqrt 3} , \frac{1}{\sqrt 3}, \frac{1}{\sqrt 3}$$.
    Similarly direction cosines of AA'are
    $$\displaystyle \left ( - \frac{1}{\sqrt 3}, \frac{1}{\sqrt 3}, \frac{1}{\sqrt 3} \right )$$.
    Let $$\theta$$ be the angle between the diagonals OP and AA'.
    $$cos \theta = \displaystyle \frac{1}{\sqrt 3} \left ( - \frac{1}{\sqrt 3} \right ) + \frac{1}{\sqrt 3} \left (  \frac{1}{\sqrt 3} \right ) + \frac{1}{\sqrt 3} \left (\frac{1}{\sqrt 3} \right )$$
    $$cos  \theta = l_1 l_2 + m_1 m_2 + n_1 n_2 = - \displaystyle \frac{1}{3} + \frac{1}{3} + \frac{1}{3} = \frac{1}{3}$$
    $$\therefore \displaystyle \theta = cos^{-1} \left ( \frac{1}{3} \right )$$.
  • Question 3
    1 / -0

    Directions For Questions

    Read the following write up carefully and answer the following questions
    There are two planes $$\displaystyle P_{1}:x-2y+3z=15$$ and plane $$\displaystyle P_{2}:x-2y+3z=30$$ Lines $$\displaystyle \frac{x-1}{1}=\frac{y-2}{-1}=\frac{z-6}{1},\frac{x-1}{-1}=\frac{y-2}{2}=\frac{z-6}{1}\: and\: \frac{x-1}{2}=\frac{y-2}{-1}=\frac{z-6}{-2}$$ passes through point P on the plane $$\displaystyle P_{1}$$ and intersects plane $$\displaystyle P_{2}$$ at A, B, C respectively Then

    ...view full instructions

    Area of $$\displaystyle \Delta ABC$$ is
    Solution

    Line PA : $$\displaystyle \frac{x-1}{1}=\frac{y-2}{-1}=\frac{z-6}{1}$$
    Line PB : $$\displaystyle \frac{x-1}{-1}=\frac{y-2}{2}=\frac{z-6}{1}$$
    Line PC : $$\displaystyle \frac{x-1}{2}=\frac{y-2}{-1}=\frac{z-6}{-2}$$
    Then $$\displaystyle A\left ( \frac{7}{2},-\frac{1}{2},\frac{17}{2} \right )$$
    $$\displaystyle B\left ( \frac{17}{2},-13,-\frac{3}{2} \right )$$
    $$\displaystyle C\left ( -14,\frac{19}{2},21 \right )$$
    Hence area of $$\displaystyle \Delta ABC=\frac{225\sqrt{14}}{8}$$, volume of tetrahedron PABC = $$\displaystyle \frac{1125}{8}$$ cubic units
  • Question 4
    1 / -0
    A vector is equally inclined to the $$x$$-axis, $$y$$-axis and $$z$$-axis respectively, its direction cosines are
    Solution

    Let the vector $$v$$ make an angle $$\alpha$$ with each of the three axes, then direction cosine of $$v$$ are

    $$<\cos\,\alpha, \cos\,\alpha, \cos\,\alpha>$$

     $$\Rightarrow \cos^2\alpha =\dfrac {1}{3}$$

    $$\Rightarrow \cos\,\alpha=\pm \dfrac{1}{\sqrt{3}}$$

    Hence, direction cosine of $$v$$ are

    $$<\dfrac{1}{\sqrt{3}}, \dfrac{1}{\sqrt{3}}, \dfrac{1}{\sqrt{3}}>$$ or

    $$<-\dfrac{1}{\sqrt{3}}, -\dfrac{1}{\sqrt{3}}, -\dfrac{1}{\sqrt{3}}>$$

  • Question 5
    1 / -0
    Find vector equation of line passing through  $$(1,4,1),(1,2,2)$$.
    Solution
    Given points 
    $$A(1,4,1)$$ and $$B(1,2,2)$$
    position vector of point A 
    $$\vec{a}=\hat{i}+4\hat{j}+\hat{k}$$
    position vector of point B 
    $$\vec{b}=\hat{i}+2\hat{j}+2\hat{k}$$
    normal vector of line be
    $$\vec{n}=\vec{b}-\vec{a}$$
    $$\vec{n}=\hat{i}+2\hat{j}+2\hat{k}-(\hat{i}+4\hat{j}+\hat{k})$$
    $$\vec{n}=\hat{i}+2\hat{j}+2\hat{k}-\hat{i}-4\hat{j}-\hat{k}$$
    $$\vec{n}=-2\hat{j}+\hat{k}$$
    vector eq of line 
    $$\vec{r}=\vec{a}+\lambda(\vec{n})$$
    $$\vec{r}=\hat{i}+4\hat{j}+\hat{k}+\lambda(-2\hat{j}+\hat{k})$$
    $$\vec{r}=\hat{i}+4\hat{j}+\hat{k}-2\lambda\hat{j}+\lambda\hat{k})$$
    $$\vec{r}=\hat{i}+(4-2\lambda)\hat{j}+(1+\lambda)\hat{k}$$

  • Question 6
    1 / -0
    What are the DR's of vector parallel to $$\left( 2,-1,1 \right) $$ and $$\left( 3,4,-1 \right) $$?
    Solution
    Required DR's are $$\left( 3-2,4+1,-1-1 \right) $$ ie, $$\left( 1,5,-2 \right) $$
  • Question 7
    1 / -0
    The direction cosines of the vectors $$2\vec {i} + \vec {j} - 2\vec {k}$$ is equal to
    Solution
    We know, $$\dfrac{a_{1}}{\left|a\right|},\dfrac{a_{2}}{\left|a\right|},\dfrac{a_{3}}{\left|a\right|}$$ are the direction cosines of $$a_{1}i+a_{2}j+a_{3}k$$
    Given vector is $$2\hat i+\hat j-2\hat k$$
    $$|a|=\sqrt {2^2+1^2+2^2}=\sqrt {9}=3$$
    Thus their direction cosines are $$\dfrac {2}{3},\dfrac {1}{3},- \dfrac {2}{3}$$
    So, option A is correct.
  • Question 8
    1 / -0
    The Cartesian equation of the plane passing through the point $$(3, -2, -1)$$ and parallel to the vectors $$\overline {b} = \overline {i} - 2\overline {j} + 4\overline {k}$$ and $$\overline {c} = 3\overline {i} + 2\overline {j} - 5\overline {k}$$ is
    Solution
    $$\begin{vmatrix} x - x_{1}& y - y_{1} & z - z_{1}\\ a_{1} & b_{1} &c_{1} \\ a_{2} & b_{2} & c_{2} \end{vmatrix} = 0$$

    $$\begin{vmatrix} x - 3 & y + 2 & z + 1\\ 1 & -2  & 4 \\ 3 & 2 & -5 \end{vmatrix} = 0$$

    $$2x+ 17y +8z +36= 0$$
  • Question 9
    1 / -0
    A straight line is equally inclined to all the three coordinate axes. Then an angle made by the line with the y-axis is
    Solution
    Let $$l, m, n$$ be the directional cosines of the line.
    We know that $$l^{2}+m^{2}+n^{2} = 1$$
    Since the line is equally inclined to all the axes, $$l = m = n$$

    Solving the two above equations we get, $$l = m = n = \frac{1}{\sqrt{3}}$$
    Hence the angle made be the line with any axis is,
    $$cos^{-1}\left ( \frac{1}{\sqrt{3}} \right )$$
  • Question 10
    1 / -0
    If the foot of the perpendicular from $$(0, 0, 0)$$ to a plane is $$(1, 2, 3)$$, then the equation of the plane is
    Solution
    The normal of the plane passes through $$(1, 2, 3) and (0, 0, 0).$$
    Hence the normal vector is given by $$1\hat{i}+2\hat{j}+3\hat{k}$$
    The equation of the plane is of the form $$x+2y+3z = c$$, where c is a constant.
    Since the plane passes through the point $$(1, 2, 3)$$,
    $$1(1)+2(2)+3(3) = c$$
    $$c = 14$$

    Hence the equation of the plane is $$x + 2y+3z = 14$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now