Self Studies

Three Dimensional Geometry Test - 16

Result Self Studies

Three Dimensional Geometry Test - 16
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The vector equation of line passing through two points $$A(x_1,y_1,z_1),B(x_2,y_2,z_2) $$ is
    Solution
    Given points 
    $$A(x_{1},y_{1},z_{1})$$ and $$B(x_{2},y_{2},z_{2})$$
    position vector of point A 
    $$\vec{a}=x_{1}\hat{i}+y_{1}\hat{j}+z_{1}\hat{k}$$
    position vector of point B 
    $$\vec{b}=x_{2}\hat{i}+y_{2}\hat{j}+z_{2}\hat{k}$$
    normal vector of line be
    $$\vec{n}=\vec{b}-\vec{a}$$
    eq of line 
    $$\vec{r}=\vec{a}+\lambda(\vec{b}-\vec{a})$$
  • Question 2
    1 / -0
    A line passes through the points (6, -7, -1) and (2, -3, 1). What are the direction ratios of the line ? 
    Solution
    Direction ratios of a line passing through points $$(x_1,y_1,z_1)$$ and $$(x_2,y_2,z_2)$$ are represented by $$\pm (x_1-x_2, \ y_1-y_2, \ z_1-z_2)$$

    Hence for the given line, direction ratios are $$(6-2,-7-(-3),-1-1)$$
    $$\Rightarrow \pm (4,-4,-2)$$
    $$\Rightarrow (-4,4,2)$$ or $$(4,-4,-2)$$
  • Question 3
    1 / -0
    Find vector equation for the line passing through the points $$3\overline i+4\overline j-7\overline k,\overline i-\overline j+6\overline k$$.

    Solution
    Given points 
    $$\vec{a}=3\hat{i}+4\hat{j}-7\hat{k}$$
    $$\vec{b}=\hat{i}-\hat{j}+6\hat{k}$$
    normal vector of line be
    $$\vec{n}=\vec{b}-\vec{a}$$
    $$\vec{n}=\hat{i}-\hat{j}+6\hat{k}-(3\hat{i}+4\hat{j}-7\hat{k})$$
    $$\vec{n}=\hat{i}-\hat{j}+6\hat{k}-3\hat{i}-4\hat{j}+7\hat{k}$$
    $$\vec{n}=-2\hat{i}-5\hat{j}+13\hat{k}$$
    vector eq of line 
    $$\vec{r}=\vec{a}+\lambda(\vec{n})$$
    $$\vec{r}=3\hat{i}+4\hat{j}-7\hat{k}+\lambda(-2\hat{i}-5\hat{j}+13\hat{k})$$
    $$\vec{r}=3\hat{i}+4\hat{j}-7\hat{k}-2\lambda\hat{i}-5\lambda\hat{j}+13\lambda\hat{k})$$
    $$\vec{r}=(3-2\lambda)\hat{i}+(4-5\lambda)\hat{j}+(-7+13\lambda)\hat{k}$$

  • Question 4
    1 / -0
    The projections of a directed line segment on the coordinate axes are $$12, 4, 3$$ respectively.
    What are the direction cosines of the line segment?
    Solution
    Let the direction cosines of the line segment in x,y,z are 12k, 4k, 3k respectively
    But $${ cos }^{ 2 }\alpha +{ cos }^{ 2 }\beta +{ cos }^{ 2 }\gamma =1$$
    $$\Rightarrow 144{ k }^{ 2 }+16{ k }^{ 2 }+9{ k }^{ 2 }=1\\ \Rightarrow { k }^{ 2 }=\dfrac { 1 }{ 169 } \\ \Rightarrow k=\dfrac { 1 }{ 13 } $$
    $$\therefore$$ The direction cosines of the line segment are $$\left(\dfrac { 12 }{ 13 } ,\dfrac { 4 }{ 13 } ,\dfrac { 3 }{ 13 } \right)$$

  • Question 5
    1 / -0
    From the point $$P(3, -1, 11)$$, a perpendicular is drawn on the line $$L$$ given by the equation $$\dfrac {x}{2} = \dfrac {y - 2}{3} = \dfrac {z - 3}{4}$$. Let $$Q$$ be the foot of the perpendicular.
    What are the direction ratios of the line segment $$PQ$$?
    Solution
    The general point on the line $$\dfrac { x }{ 2 } =\dfrac { y-2 }{ 3 } =\dfrac { z-3 }{ 4 } $$ is $$(x,y,z)=(2\lambda ,3\lambda +2,4\lambda +3)$$
    Let $$Q(x,y,z)=(2\lambda ,3\lambda +2,4\lambda +3)$$
    The directional cosines of $$PQ= 2\lambda -3,3\lambda +3,4\lambda -8 $$
    Since the line $$L$$ and $$PQ$$ are perpendicular
    $$(2\lambda -3)(2)+(3\lambda +3)(3)+(4\lambda -8)4=0\\ \Longrightarrow \lambda =1\\ \Longrightarrow Q=(2,5,7)$$
    The direction ratios of $$PQ=(-1,6,-4)$$
  • Question 6
    1 / -0
    Find the vector equation of line joining the points $$ (2,1,3)$$ and $$(-4,3,-1)$$
    Solution
    given Points
    A(2,1,3) and B(-4,3,-1)
    $$\vec{b}=-4\hat{i}+3\hat{j}-\hat{k}$$
    Position vector of line 
    $$A=\vec{a}=2\hat{i}+\hat{j}+3\hat{k}$$
    normal vector can be calculated by
    $$\vec{b}-\vec{a}=\vec{n}=-4\hat{i}+3\hat{j}-\hat{k}-(2\hat{i}+\hat{j}+3\hat{k})$$
    $$\vec{n}=-4\hat{i}+3\hat{j}-\hat{k}-2\hat{i}-\hat{j}-3\hat{k}$$
    $$\vec{n}=-6\hat{i}+2\hat{j}-4\hat{k}$$
    eq of line 
    $$\vec{r}=\vec{a}+\lambda\vec{n}$$
    $$\vec{r}=2\hat{i}+\hat{j}+3\hat{k}+\lambda(-6\hat{i}+2\hat{j}-4\hat{k})$$
    $$\vec{r}=2\hat{i}+\hat{j}+3\hat{k}-6\lambda\hat{i}+2\lambda\hat{j}-4\lambda\hat{k}$$
    $$\vec{r}=(2-6\lambda)\hat{i}+(1+2\lambda)\hat{j}+(3-4\lambda)\hat{k}$$
    $$\vec{r}=2(1-3\lambda)\hat{i}+(1+2\lambda)\hat{j}+(3-4\lambda)\hat{k}$$
  • Question 7
    1 / -0
    If a line makes the angles $$ \alpha , \beta$$ and $$\gamma$$ with the axes, then what is the value of $$1+\cos 2\alpha +\cos 2\beta+\cos 2\gamma$$ equal to ?
    Solution
    Since, the line makes the angles $$ \alpha , \beta$$ and $$\gamma$$ with the axes
    So, $$\cos\alpha, \cos\beta, \cos\gamma $$ will be the direction cosines of the line.
    And we know that the sum of squares of the direction cosines of any line is $$1$$.
    Now,
    $$1+\cos 2\alpha +\cos 2\beta +\cos 2\gamma$$ 
    $$ =1+(2\cos ^{ 2 }\alpha -1)+(2\cos ^{ 2 }\beta -1)+(2\cos ^{ 2 }\gamma -1)$$
    $$ =1+2(\cos ^{ 2 }\alpha +\cos ^{ 2 }\beta +\cos ^{ 2 }\gamma )-3$$
    $$ =1+2-3=0$$
    Hence, B is correct.
  • Question 8
    1 / -0
    Which of the following represents direction cosines of the line:
    Solution
    If direction cosine of a line is $$l,m,n$$, then
    $${ l }^{ 2 }+{ m }^{ 2 }+{ n }^{ 2 }=1$$
    $${ 0 }^{ 2 }+{ \left( \cfrac { \sqrt { 3 }  }{ 2 }  \right)  }^{ 2 }+{ \left( \cfrac { 1 }{ 2 }  \right)  }^{ 2 }=1$$
    Hence, the correct answer from the given alternative is (c) $$0,\cfrac { \sqrt { 3 }  }{ 2 } ,\cfrac { 1 }{ \sqrt { 2 }  } $$.
  • Question 9
    1 / -0
    The length of perpendicular from the origin to the plane which makes intercepts $$\dfrac{1}{3},\dfrac{1}{4},\dfrac{1}{5}$$ respectively on the coordinate axes is 
    Solution
    Equation of plane $$\dfrac{x}{a}+\dfrac{y}{b}+\dfrac{z}{c}=1$$

    $$3x+4y+5z-1=0$$

    diatance from origin $$\dfrac{1}{\sqrt{50}}=\dfrac{1}{\sqrt[5]{2}}$$
  • Question 10
    1 / -0
    If the normal of the plane makes an angles $$\dfrac {\pi}{4}, \dfrac {\pi}{4}$$ and $$\dfrac {\pi}{2}$$ with positive X-axis, Y-axis and Z-axis respectively and the length of the perpendicular line segment from origin to the plane is $$\sqrt {2}$$, then the equation of the plane is ________.
    Solution
    Normal of the plane makes an angle of $$\dfrac{\pi}{4},\dfrac{\pi}{4},\dfrac{\pi}{2}$$ with X-axix,Y-axis, and Z-axis respectively,

    Direction ratio of normal to the plane is$$(\cos\alpha,\cos\beta,\cos\gamma)$$
    Direction ratio of normal to the plane is
    $$\left (\cos \dfrac {\pi}{4}, \cos \dfrac {\pi}{4}, \cos \dfrac {\pi}{2}\right )$$
    $$\left (\dfrac {1}{\sqrt {2}}, \dfrac {1}{\sqrt {2}}, 0\right )$$
    Equation of the plane is given by 
    $$x\cos\alpha+y\cos\beta+z\cos\gamma=\perp\ distance$$
    $$\therefore \dfrac {x}{\sqrt {2}} + \dfrac {y}{\sqrt {2}} = \sqrt {2}$$
    $$x + y = 2$$.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now