Given equation are,
$$\begin{array}{l} l+m+n=0----------(1) \\ { l^{ 2 } }+{ m^{ 2 } }+{ n^{ 2 } }=0---------(2) \\ from\, \, \, \, equ\, \, (1)\, ,\, \, \, l=-\, \, (m+n) \\ value\, \, of\, \, \, l....... \\ substituting\, \, in\, \, (2) \\ { (m+n)^{ 2 } }+{ m^{ 2 } }-{ n^{ 2 } }=0 \\ \Rightarrow { m^{ 2 } }+{ n^{ 2 } }+2mn+{ m^{ 2 } }-{ n^{ 2 } }=0 \\ \Rightarrow 2{ m^{ 2 } }+2mn=0 \\ \Rightarrow 2m(m+n)=0 \\ \Rightarrow m=0\, \, \, \, and\, \, \, (m+n)=0 \\ Now, \\ m=0\, ,\, substituting\, in\, \, (1) \\ l+m+n=0 \\ l+n=0,\Rightarrow l=-n \\ Dr.s\, of\, the\, \, first\, line\, are\, \, (1,0,-1) \\ and, \\ m+n=0\, \, \, \Rightarrow \, m=-n \\ substituting\, \, \, in\, \, (1)\, \\ l+m+n=0 \\ l=0 \\ D'rs\, of\, the\, \, { { second } }\, \, line\, are\, \, (0,1,-1) \end{array}$$
$$\begin{array}{l} Lets\, \, \theta \, be\, the\, angle\, \, between\, the\, \, line, \\ \cos \theta =\dfrac { { { a_{ 1 } }{ a_{ 2 } }+{ b_{ 1 } }{ b_{ 2 } }+{ c_{ 1 } }{ c_{ 2 } } } }{ \begin{array}{l} \sqrt { { a_{ 1 } }^{ 2 }+{ b_{ 1 } }^{ 2 }+{ c_{ 1 } }^{ 2 } } \, \, \sqrt { { a_{ 2 } }^{ 2 }+{ b_{ 2 } }^{ 2 }+{ c_{ 2 } }^{ 2 } } \\ =\dfrac { { 0+0+1 } }{ { \sqrt { 2 } .\sqrt { 2 } } } =\frac { 1 }{ 2 } \\ \, \cos \theta =\dfrac { 1 }{ 2 } \\ \therefore \, \, \, \theta =\dfrac { \pi }{ 3 } \, \end{array} } \end{array}$$
so that the correct option is A.