Self Studies

Three Dimensional Geometry Test - 20

Result Self Studies

Three Dimensional Geometry Test - 20
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$\overline{a}$$ and $$\overline{b}$$ are two non-collinear vectors, then the points $$l_{1}\overline{a}+m_{1}\overline{b}$$, $$  l_{2}\overline{a}+m_{2}\overline{b}$$ and $$l_{3}\overline{a}+m_{3}\overline{b}$$ are collinear if
    Solution
    $$\bar { a } $$ and $$\bar { b }$$ are non-collinear

    $$\triangle \quad =\quad \left| \begin{matrix} 1\quad  & 1\quad  & 1 \\ { l }_{ 1 }\quad  & { l }_{ 2 }\quad  & { l }_{ 3 } \\ { m }_{ 1 }\quad  & { m }_{ 2 }\quad  & { m }_{ 3 } \end{matrix} \right| =0$$
    $$ { c }_{ 1 }\rightarrow { c }_{ 1 }-{ c }_{ 2 }\\ { c }_{ 3 }\rightarrow { c }_{ 1 }-{ c }_{ 3 }\\ \triangle \quad =\quad \left| \begin{matrix} 0 & 1 & 0 \\ { { l }_{ 1 }-{ l }_{ 2 }\quad  } & { l }_{ 2 }\quad  & { l }_{ 1 }-{ l }_{ 3 } \\ { m }_{ 1 }-{ m }_{ 2 }\quad  & { m }_{ 2 }\quad  & { m }_{ 1 }-{ m }_{ 3 } \end{matrix} \right|=0$$ 
    $$\triangle \quad =\quad -({ l }_{ 1 }-{ l }_{ 2 })({ m }_{ 1 }-{ m }_{ 3 })+({ l }_{ 1 }-{ l }_{ 3 })({ m }_{ 1 }-{ m }_{ 2 })=0$$ 
    $$\Rightarrow \displaystyle\sum{ l }_{ 1 }({ m }_{ 2 }-{ m }_{ 3 })\quad =\quad 0$$
  • Question 2
    1 / -0
    A line makes an angle $$\alpha,\beta,\gamma$$ with the $$X,Y,Z$$ axes. Then $$\sin^2\alpha+\sin^2\beta+\sin^2\gamma=$$
    Solution
    For a vector
    $$\cos^2(\alpha)+\cos^2(\beta)+\cos^2(\gamma)=1$$
    $$1-\sin^2(\alpha)+1-\sin^2(\beta)+1-\sin^2(\gamma)=1$$
    $$\sin^2(\alpha)+\sin^2(\beta)+\sin^2(\gamma)=3-1=2$$

    Option  B

  • Question 3
    1 / -0
    The angle made by line $$r[cos \theta  - \sqrt{3} sin \theta ]=5$$ with initial line is
    Solution
    Given equation
    $$r[cos \theta  - \sqrt{3} sin \theta ]=5$$
    $$x-\sqrt{3}y=5$$
    Slope of the line is $$\tan\theta=\frac{1}{\sqrt{3}}$$
    $$\Rightarrow \theta={30}^{0}$$
    Hence, the line makes an angle of $$30^{0}$$ with the initial line.
  • Question 4
    1 / -0
    The line passing through the points $$10\hat{i}+3\hat{j}$$, $$ 12\hat{i}+5\hat{j}$$ also passes through the point $$a\hat{i}+11 \hat{j}$$, then $$a=$$
    Solution
    Let $$\vec{v}=10\hat{i}+3\hat{j}$$
    $$\vec{u}=12\hat{i}+5\hat{j}$$
    $$\vec{w}=a\hat{i}+11\hat{j}$$
    As $$\vec{u},\vec{v},\vec{w}$$ are on a line then $$\vec{u}-\vec{v}$$ is collinear with $$\vec{w}-\vec{u}$$
    $$2\hat{i}+2\hat{j}=k((a-12)\hat{i}+6\hat{j})$$
    $$2 =6k$$,   $$2$$$$=k(a-12)$$
    $$k=\dfrac{1}{3}$$,  $$a=18$$
  • Question 5
    1 / -0
    The position vectors of three points are $$2\overrightarrow { a } -\overrightarrow { b } +3\overrightarrow { c } ,\overrightarrow { a } -2\overrightarrow { b } +\lambda \overrightarrow { c } $$ and $$\mu \overrightarrow { a } -5\overrightarrow { b } $$, where $$\overrightarrow { a } ,\overrightarrow { b } ,\overrightarrow { c } $$ are non-coplanar vectors. The points are coliinear when
    Solution
    Let the points $$A,B$$ and $$C$$ respectively, then 
    $$\overrightarrow { AB } =\overrightarrow { OB } -\overrightarrow { OA } \\ =\overrightarrow { a } -2\overrightarrow { b } +\lambda \overrightarrow { c } -\left( 2\overrightarrow { a } -\overrightarrow { b } +3\overrightarrow { c }  \right) \\ =-\overrightarrow { a } -\overrightarrow { b } +\left( \lambda -3 \right) \overrightarrow { c } $$
    $$\overrightarrow { AC } =\overrightarrow { OC } -\overrightarrow { OA } \\ =\mu \overrightarrow { a } -5\overrightarrow { b } -\left( 2\overrightarrow { a } -\overrightarrow { b } +3\overrightarrow { c }  \right) \\ =\left( \mu -2 \right) \overrightarrow { a } -4\overrightarrow { b } -3\overrightarrow { c } $$
    The points are collinear if $$\overrightarrow { AB } =t\overrightarrow { AC } $$
    $$\Rightarrow -1=t\left( \mu -2 \right) ,-1=4t,\lambda -3=-3t$$
    $$\displaystyle \Rightarrow -1=t\left( \mu -2 \right) ,-1=4t,\lambda -3=-3t$$ and $$\displaystyle -1=\frac { -1 }{ 4 } \left( \mu -2 \right) ,\lambda -3=\frac { 3 }{ 4 } $$
    $$\displaystyle \Rightarrow \mu =6,\lambda =\frac {15 }{ 4 } $$
  • Question 6
    1 / -0
    The vectors $$2\hat{i}+3\hat{j};5\hat{i}+6\hat{j};8\hat{i}+\lambda\hat{j}$$ have their initial points at $$(1,1 )$$. The value of  $$\lambda$$ so that the vectors terminate on one straight line is
    Solution
    $$\vec{V}= 2\hat{i}+3\vec{j}$$
    $$\vec{U}= 5\hat{i}+6\vec{j}$$
    $$\vec{W}= 8\hat{i}+\lambda \vec{j}$$
    $$\vec{V}-\vec{U}= k(\vec{W}-\vec{U})$$ (as they are collnear)
    $$(-3\hat{i}-3\hat{j})= k(3\vec{i}+(\lambda -6)\hat{j})$$)
    as $$\hat{i}$$ & $$j $$ are non collienar
    $$-3=3k$$
    $$k=-1$$
    $$k(\lambda -6)= -3$$
    $$\lambda = 9$$
  • Question 7
    1 / -0
    The point collinear with $$(1, -2, -3)$$ and $$(2, 0, 0)$$ among the following is
    Solution
    Any point lying on the line joining $$(1,-2,-3)$$ and $$(2,0,0)$$ can be written in the form of $$(1+k, -2+2k, -3+3k)$$. 
    Since, all the options have their $$x$$ coordinate as $$0$$,
    $$1+k = 0$$
    $$k = -1$$
    Thus, $$y=-2 + 2k = -4$$ and $$z=-3+3k = -6$$
    Hence, option C is correct.
  • Question 8
    1 / -0
    If the points $$(h, 3, -4), (0, -7, 10)$$ and $$(1, k, 3)$$ are collinear, then $$h + k$$ is
    Solution
    Any point lying on the line joining $$(h,3,-4)$$ and $$(0,-7,10)$$ can be written in the form of $$(h-hl,3-10l,-4+14l)$$, where $$l$$ is a constant.
    Since, $$(1,k,3)$$ is also a point on this line, it should satisfy this form.
    $$\Rightarrow -4+14l = 3$$. 
    $$\therefore l =$$ $$ \dfrac{1}{2} $$
    $$\Rightarrow k = 3-10l = -2 $$
    $$\Rightarrow h(1-l) = 1 $$
    $$\therefore  h = 2$$
    Hence, $$h + k = 2-2 = 0$$
  • Question 9
    1 / -0
    Assertion ($$A$$): The points with position vectors $$\overline{a},\overline{b},\overline{c}$$ are collinear if $$2\overline{a}-7\overline{b}+5\overline{c}=0$$.
    Reason ($$R$$): The points with position vectors $$\overline{a},\overline{b},\overline{c}$$ are collinear if $$l\overline{a}+m\overline{b}+n\overline{c}=\overline{0}$$.
    Solution
    $$\overrightarrow { a } ,\overrightarrow { b } ,\overrightarrow { c } $$ are collinear
    $$\Rightarrow \ni l,m,n$$ all zeros such that 
    $$l\overrightarrow { a } +m\overrightarrow { b } +n\overrightarrow { c } =0$$ if $$2\overrightarrow { a } -7\overrightarrow { b } +5\overrightarrow { c } =0$$
    then $$\overrightarrow { a } ,\overrightarrow { b } ,\overrightarrow { c } $$ are collinear since $$2-7+5=0$$
  • Question 10
    1 / -0
    If the points whose position vectors are $$2\overline{i}+\overline{j}+\overline{k},\ 6\overline{i}-\overline{j}+2\overline{k}$$ and $$14\overline{i}-5\overline{j}+p\overline{k}$$ are collinear then the value of $$\mathrm{p}$$ is
    Solution
    $$2\hat{i}+\hat{j}+\hat{k}=\lambda (6\hat{i}-\hat{j}+2\hat{k})+\mu (14\hat{i}-5\hat{j}+p\hat{k})$$ (Property of Collinear)
    $$2=b\lambda +14 \mu$$
    $$1=-\lambda -5\mu$$
    $$0=8\lambda+24\mu$$
    $$\dfrac{-\lambda}{3}= \mu$$
    $$\lambda =\dfrac{3}{2}\ \ \ \ \mu=\dfrac{-1}{2}$$
    $$1=2\lambda + p \mu$$
    $$-2= \dfrac{-p}{2}$$
    $$p= 4$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now