Let the
direction cosines of the line be $$l_{1},m_{1},n_{1}$$.
Hence, $$l_{1}=\cos\alpha$$, $$m_{1}=\cos\beta$$, $$n_{1}=\cos\gamma$$
Similarly, for another
line
$$l_{2}=\cos\alpha'$$, $$m_{2}=\cos\beta'$$, $$n_{2}=\cos\gamma'$$
Now the direction
cosines of the angle bisector will be,
$$\displaystyle
\cos\left(\dfrac{\alpha-\alpha'}{2}+\alpha'\right),\cos \left(\dfrac{\beta-\beta'}{2}+\beta'
\right),\cos\left(\dfrac{\gamma-\gamma'}{2}+\gamma'\right)$$
$$=\cos\left(\dfrac{\alpha+\alpha'}{2}\right),\cos\left(\dfrac{\beta+\beta'}{2}\right),\cos\left(\dfrac{\gamma+\gamma'}{2}\right)$$
$$=l,m,n$$
Now consider
$$\cos\left(\dfrac{\alpha+\alpha'}{2}\right)$$
Multiplying and
dividing by $$\displaystyle 2\cos\left(\dfrac{\alpha-\alpha'}{2}\right)$$, we
get
$$\displaystyle \dfrac{2\cos\left(\dfrac{\alpha-\alpha'}{2}\right)\cos\left(\dfrac{\alpha+\alpha'}{2}\right)}{2\cos\left(\dfrac{\alpha-\alpha'}{2}\right)}$$
$$=\displaystyle \dfrac{\cos\alpha+\cos\alpha'}{2\cos(\dfrac{\alpha-\alpha'}{2})}$$
$$=\displaystyle \dfrac{l_{1}+l_{2}}{2\cos(\dfrac{\alpha-\alpha'}{2})}$$
$$=l$$
Hence, $$ l = \dfrac{l_1+l_2}{2
\cos \left(\dfrac{\theta}{2} \right) }$$
Similarly,
$$m=\displaystyle \dfrac{m_{1}+m_{2}}{2\cos(\dfrac{\beta-\beta'}{2})}$$
$$n=\displaystyle \dfrac{n_{1}+n_{2}}{2\cos(\dfrac{\gamma-\gamma'}{2})}$$
Hence, option B is
correct.