Self Studies

Three Dimensional Geometry Test - 23

Result Self Studies

Three Dimensional Geometry Test - 23
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The sum of the squares of sine of the angles made by the line $$AB$$ with $$OX, OY, OZ$$ where $$O$$ is the origin is
    Solution
    Let $$ \cos\alpha, \cos\beta $$ and $$\cos\gamma$$  be the direction cosines.
    We know that $$\cos^{2}\alpha + \cos^{2}\beta + \cos^{2}\gamma = 1$$
    Now rewrite it as $$\cos^{2}\alpha = 1 - \sin^{2}\alpha$$
    $$\Rightarrow \cos^{2}\beta = 1 - \sin^{2}\beta$$
    $$\Rightarrow \cos^{2}\gamma = 1 - \sin^{2}\gamma$$
    Then we get, $$\sin^{2}\alpha + \sin^{2}\beta + \sin^{2}\gamma = 2$$
  • Question 2
    1 / -0
    The direction ratios of a normal to the plane passing through $$(0,1,1), (1,1,2)$$ and $$(-1,2,-2)$$ are
    Solution
    The $$3$$ given points are $$A(0,0,1), B(0,1,2)$$ and $$C(1,2,3)$$

    The dr's of $$AB$$ are $$(0,1,1)$$

    The dr's of $$BC$$ are $$(1,1,1)$$

    The normal to the plane will be perpendicular to both these lines.

    Hence, $$n = AB \times BC$$

    $$n = (0,1,-1)$$
  • Question 3
    1 / -0
    The direction ratios of a normal to the plane through $$(1,\ 0,\ 0),\ (0,\ 1,\ 0)$$ which makes an angle of $$\displaystyle \dfrac{\pi}{4}$$ with the plane $$x+y=3$$ are
    Solution
    Let the equation of the plane be $$Ax+By+Cz=D.$$

    Angle between two planes is given by cos$$\theta =\dfrac{A_{1}A_{2}+B_{1}B_{2}+C_{1}C_{2}}{\sqrt{A_{1}^{2}+B_{1}^{2}+C_{1}^{2}}\sqrt{A_{2}^{2}+B_{2}^{2}+C_{2}^{2}}}$$

    $$\therefore \cos \dfrac{\pi}{4}= \dfrac{1}{\sqrt{2}} = \dfrac{A\times1+B\times1}{\sqrt{A^{2}+B^{2}+C^{2}}\sqrt{1^{2}+1^{2}}}$$

    $$\Rightarrow A^{2}+B^{2}+C^{2} = (A+B)^{2} $$

    $$\Rightarrow A^{2}+B^{2}+C^{2} = A^{2}+B^{2}+2AB$$

    $$\Rightarrow C^{2} = 2AB$$  ...... $$(I)$$

    $$\because$$ The plane passes through $$(1,0,0)$$ and $$(0,1,0)$$.

    $$\Rightarrow A=D $$ and $$B=D $$

    From $$(I)$$, we have,

    $$C^{2}=2A^{2}$$

    $$\Rightarrow C=\sqrt{2}A$$

    $$\therefore $$ equation of plane reduces to $$Ax+Ay+\sqrt{2}Az=A$$

    $$x+y+\sqrt{2}z=1$$

    $$\therefore$$ direction ratios of normal are ($$1,1,\sqrt{2}$$).

    $$\therefore$$ ans. is option B.
  • Question 4
    1 / -0
    If $$l_{1},m_{1},n_{1}$$ and $$1_{2},m_{2},n_{2}$$ are the direction cosines of two lines, then $$(l_{1}l_{2}+m_{1}m_{2}+n_{1}n_{2})^{2}+\displaystyle\sum(m_{1}n_{2}-m_{2}n_{1})^{2}=$$
    Solution
    Dot product of dc's of two lines gives,
    $$(l_{ 1 }\hat i+m_{ 1 }\hat j+n_{ 1 }\hat k).(l_{ 2 }\hat i+m_{ 2 }\hat j+n_{ 2 }\hat k)=\sqrt { { l_{ 1 } }^{ 2 }+{ m_{ 1 } }^{ 2 }+{ n_{ 1 } }^{ 2 } } \times \sqrt { { l_{ 2 } }^{ 2 }+{ m_{ 2 } }^{ 2 }+{ n_{ 2 } }^{ 2 } } \times \cos\theta $$
    We know $${ l_{ 1 } }^{ 2 }+{ m_{ 1 } }^{ 2 }+{ n_{ 1 } }^{ 2 }=1,\quad { l_{ 2 } }^{ 2 }+{ m_{ 2 } }^{ 2 }+{ n_{ 2 } }^{ 2 }=1$$
     $$\Rightarrow l_{ 1 }l_{ 2 }+m_{ 1 }m_{ 2 }+n_{ 1 }n_{ 2 }=1.1.\cos\theta \Rightarrow { (l_{ 1 }l_{ 2 }+m_{ 1 }m_{ 2 }+n_{ 1 }n_{ 2 }) }^{ 2 }={ \cos }^{ 2 }\theta $$
    Cross product of dc's of two lines
    $$\left| (l_{ 1 }\hat i+m_{ 1 }\hat j+n_{ 1 }\hat k)\times (l_{ 2 }\hat i+m_{ 2 }\hat j+n_{ 2 }\hat k) \right| =\left| \sqrt { { l_{ 1 } }^{ 2 }+{ m_{ 1 } }^{ 2 }+{ n_{ 1 } }^{ 2 } } \times \sqrt { { l_{ 2 } }^{ 2 }+{ m_{ 2 } }^{ 2 }+{ n_{ 2 } }^{ 2 } } \times \sin\theta  \right| $$
     $$\Rightarrow \sqrt { \Sigma (m_{ 1 }n_{ 2 }-m_{ 2 }n_{ 1 })^{ 2 } } =\sin\theta \Rightarrow \Sigma (m_{ 1 }n_{ 2 }-m_{ 2 }n_{ 1 })^{ 2 }={ \sin }^{ 2 }\theta $$
     $${ (l_{ 1 }l_{ 2 }+m_{ 1 }m_{ 2 }+n_{ 1 }n_{ 2 }) }^{ 2 }+\Sigma (m_{ 1 }n_{ 2 }-m_{ 2 }n_{ 1 })^{ 2 }={ \cos }^{ 2 }\theta +{ \sin }^{ 2 }\theta =1$$
  • Question 5
    1 / -0
    Find the direction cosines of vector $$\overrightarrow { r } $$ which is equally inclined to $$OX,OY$$ and $$OZ$$. Find total number of such vectors.
    Solution

    Let $$l,m,n$$ be the direction cosines of $$\overrightarrow { r } $$.

    Since $$\overrightarrow { r } $$ is equally inclined with $$x,y$$ and $$z$$ axis, $$l=m=n$$

    $$\displaystyle \therefore { l }^{ 2 }+{ m }^{ 2 }+{ n }^{ 2 }\Rightarrow 3{ l }^{ 3 }=1\Rightarrow l=\pm \dfrac { 1 }{ \sqrt { 3 }  } $$

    $$\therefore$$ direction cosines of $$\overrightarrow { r } $$ are $$\displaystyle \pm \dfrac { 1 }{ \sqrt { 3 }  } ,\pm \dfrac { 1 }{ \sqrt { 3 }  } ,\pm \dfrac { 1 }{ \sqrt { 3 }  } $$

    Now, $$\displaystyle \overrightarrow { r } =\left| \overrightarrow { r }  \right| \left( li+mj+nk \right) =\overrightarrow { r } =\left| \overrightarrow { r }  \right| \left( \pm \dfrac { 1 }{ \sqrt { 3 }  } i\pm \dfrac { 1 }{ \sqrt { 3 }  } j\pm \dfrac { 1 }{ \sqrt { 3 }  } k \right) $$

    Since $$+$$ and $$-$$ signs can be arranged at three places,

    $$\Rightarrow$$ there are eight vectors, i.e $$2\times 2\times 2$$ which are equally inclined to axes.

  • Question 6
    1 / -0
    lf $$\theta $$ is the angle between two lines whose d.c.s are $$l_{1},m_{1},n_{1}$$ and $$l_{2}, m_{2}, n_{2}$$, then the d.cs of one of the angular bisectors of the two lines are
    Solution

    Let the direction cosines of the line be $$l_{1},m_{1},n_{1}$$.

    Hence, $$l_{1}=\cos\alpha$$, $$m_{1}=\cos\beta$$, $$n_{1}=\cos\gamma$$

    Similarly, for another line

    $$l_{2}=\cos\alpha'$$, $$m_{2}=\cos\beta'$$, $$n_{2}=\cos\gamma'$$

    Now the direction cosines of the angle bisector will be, 

    $$\displaystyle \cos\left(\dfrac{\alpha-\alpha'}{2}+\alpha'\right),\cos \left(\dfrac{\beta-\beta'}{2}+\beta' \right),\cos\left(\dfrac{\gamma-\gamma'}{2}+\gamma'\right)$$

    $$=\cos\left(\dfrac{\alpha+\alpha'}{2}\right),\cos\left(\dfrac{\beta+\beta'}{2}\right),\cos\left(\dfrac{\gamma+\gamma'}{2}\right)$$

    $$=l,m,n$$ 

    Now consider $$\cos\left(\dfrac{\alpha+\alpha'}{2}\right)$$

    Multiplying and dividing by $$\displaystyle 2\cos\left(\dfrac{\alpha-\alpha'}{2}\right)$$, we get

    $$\displaystyle \dfrac{2\cos\left(\dfrac{\alpha-\alpha'}{2}\right)\cos\left(\dfrac{\alpha+\alpha'}{2}\right)}{2\cos\left(\dfrac{\alpha-\alpha'}{2}\right)}$$

    $$=\displaystyle \dfrac{\cos\alpha+\cos\alpha'}{2\cos(\dfrac{\alpha-\alpha'}{2})}$$

    $$=\displaystyle \dfrac{l_{1}+l_{2}}{2\cos(\dfrac{\alpha-\alpha'}{2})}$$

    $$=l$$

    Hence, $$ l = \dfrac{l_1+l_2}{2 \cos \left(\dfrac{\theta}{2} \right) }$$

    Similarly, 

    $$m=\displaystyle \dfrac{m_{1}+m_{2}}{2\cos(\dfrac{\beta-\beta'}{2})}$$

    $$n=\displaystyle \dfrac{n_{1}+n_{2}}{2\cos(\dfrac{\gamma-\gamma'}{2})}$$

    Hence, option B is correct.

  • Question 7
    1 / -0
    The product of the d.cs of the line which makes equal angles with $$ox, oy, oz$$ is
    Solution
    $$\cos^2(\alpha)+\cos^2(\beta)+\cos^2(\gamma)=1$$
    $$\Rightarrow 3\cos^2(\alpha)=1$$
    $$ \displaystyle \Rightarrow \cos \alpha = \pm \dfrac{1}{\sqrt{3}}$$
    Product will be $$\cos^3(\alpha)= \pm 1/3(\sqrt3)$$
    Hence, option C is correct.
  • Question 8
    1 / -0
    lf a line makes angles $$\displaystyle \dfrac{\pi}{12}, \displaystyle \dfrac{5\pi}{12}$$ with $$OY, OZ $$ respectively where $$O=({0}, 0,0)$$, then the angle made by that line with $$OX$$ is
    Solution
    $$\left (\cos\dfrac {\pi}{12}\right)^{2}+\left (\cos \dfrac {5\pi}{12}\right)^{2}+(\cos(\gamma))^{2}=1$$
    $$\left (\cos  \dfrac {\pi}{12}\right)^{2}+\left (\sin \dfrac {\pi }{12}\right)^{2}+(\cos(\gamma))^{2}=1$$     ..... $$\left(\cos\theta=\sin\left (\dfrac {\pi}{2}-\theta\right)\right)$$

    $$(\cos(\gamma))^{2}=0$$
    $$\cos(\gamma)=0$$
    $$\gamma=90^{\circ}$$
  • Question 9
    1 / -0
    The coordinates of a point P are $$(3,12,4)$$ w.r.t origin O, then the direction cosines of $$OP$$ are
    Solution
    Given points are $$O(0,0,0)=(x_1,y_1,z_1)$$ and $$P(3,12,4)=(x_2,y_2,z_2)$$ 
    Direction cosines of $$OP$$ is given by
    $$\cos \alpha=\dfrac{x_2-x_1}{\sqrt{x_2^2+y_2^2+z_2^2}}$$
    $$\cos \beta=\dfrac{y_2-y_1}{\sqrt{x_2^2+y_2^2+z_2^2}}$$
    $$\cos \gamma=\dfrac{z_2-z_1}{\sqrt{x_2^2+y_2^2+z_2^2}}$$

    $$\implies$$ $$\cos \alpha=\dfrac{3-0}{\sqrt{3^2+12^2+4^2}}=\dfrac{3}{\sqrt{169}}=\dfrac{3}{13}$$

    $$\implies$$ $$\cos \beta=\dfrac{12-0}{\sqrt{3^2+12^2+4^2}}=\dfrac{12}{\sqrt{169}}=\dfrac{12}{13}$$

    $$\implies$$ $$\cos \gamma=\dfrac{4-0}{\sqrt{3^2+12^2+4^2}}=\dfrac{4}{\sqrt{169}}=\dfrac{4}{13}$$

    Hence, the direction cosines are $$\dfrac{3}{13},\dfrac{12}{13},\dfrac{4}{13}$$.


  • Question 10
    1 / -0
    lf a line makes angles $$\alpha, \beta,\gamma$$ with $$OX, OY, OZ$$ respectively where $${O}=(0,0,0)$$, then $$\cos 2\alpha+\cos 2 \beta+\cos 2 \gamma=$$
    Solution
    $$(\cos\alpha )^2+(\cos\beta )^2+(\cos\gamma )^2=1$$
    $$2 \times [(\cos\alpha )^2+(\cos\beta )^2+(\cos\gamma )^2]=2$$
    $$2 \times [(\cos\alpha )^2+(\cos\beta )^2+(\cos\gamma )^2]-3=-1$$
    $$2(\cos\alpha )^2-1+2(\cos\beta )^2-1+2(\cos\gamma )^2-1]=-1$$
    $$(\cos2\alpha )+(\cos2\beta )+(\cos2\gamma )=-1$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now