Self Studies

Three Dimensional Geometry Test - 24

Result Self Studies

Three Dimensional Geometry Test - 24
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$ox, oy$$ are positive $$\mathrm{x}$$-axis, positive $${y}$$-axis respectively where $${O}=(0, 0,0)$$ . The $${d.c.}$$s of the llne which bisects $$\angle xoy$$ are
    Solution
    Equation of line bisecting $$XOY$$ is $$x=y$$
    Therefore, d.r. s are $$(1,1,0)$$
    And thus d.c. s are $$\left( \dfrac { 1 }{ \sqrt { 2 }  } ,\dfrac { 1 }{ \sqrt { 2 }  } ,0 \right) $$
    Ans: B
  • Question 2
    1 / -0
    The direction cosines of the line passing through $$\mathrm{P}(2,3,-1)$$ and the origin are
    Solution
    Given points are $$P(2,3,-1)=(x_1,y_1,z_1)$$ and $$(0,0,0)=(x_2,y_2,z_2)$$
    Direction cosines of a line passing through these two points is given by
    $$\cos \alpha=\dfrac{x_2-x_1}{\sqrt{x_1^2+y_1^2+z_1^2}}$$
    $$\cos \beta=\dfrac{y_2-y_1}{\sqrt{x_1^2+y_1^2+z_1^2}}$$
    $$\cos \gamma=\dfrac{z_2-z_1}{\sqrt{x_1^2+y_1^2+z_1^2}}$$

    $$\implies$$ $$\cos \alpha=\dfrac{0-2}{\sqrt{2^2+3^2+(-1)^2}}=\dfrac{-2}{\sqrt{14}}$$
    $$\cos \beta=\dfrac{0-3}{\sqrt{2^2+3^2+(-1)^2}}=\dfrac{-3}{\sqrt{14}}$$
    $$\cos \gamma=\dfrac{0-(-1)}{\sqrt{2^2+3^2+(-1)^2}}=\dfrac{1}{\sqrt{14}}$$
    Hence, the direction cosines are $$\dfrac{-2}{\sqrt{14}},\dfrac{-3}{\sqrt{14}},\dfrac{1}{\sqrt{14}}$$.
  • Question 3
    1 / -0
    If $$A$$ is $$(2, 4, 5),$$ and $$B$$ is $$(-7, -2, 8)$$, then which of the following is collinear with$$A$$ and $$B$$ is
    Solution
    Line passing through $$A(2,4,5)$$ and $$B(-7,-2,8)$$ is
    $$L: \dfrac{x-2}{9} = \dfrac{y-4}{6} = \dfrac{z-5}{-3}$$
    Lets suppose $$O$$ is collinear with $$A$$ and $$B$$, then $$L = k$$
    $$\therefore$$ Coordinates of $$O$$ are $$(2+9k,4+6k,5-3k)$$
    Looking at options, only option C satisfies the coordinates of $$O$$ for $$k = -\dfrac{1}{3}$$
  • Question 4
    1 / -0

    lf a line makes $$\dfrac{\pi }{3},\dfrac{\pi }{4}$$ with the $$x$$-axis, $${y}$$-axis respectively, then the angle made by that line with the $$z$$- axis is
    Solution

    We have, $$\left (\cos\left (\dfrac {\pi}{3}\right)\right)^{2}+\left (\cos\left (\dfrac {\pi}{4}\right)\right)^{2}+(\cos(\gamma))^{2}=1$$
    $$\Rightarrow \cos^{2}\gamma = \dfrac {1}{4}$$

    $$ \displaystyle \Rightarrow \cos \gamma = \pm \frac{1}{2}$$
    $$\Rightarrow \gamma=\dfrac {\pi}{3}$$ or $$ \dfrac {2 \pi}{3}$$

  • Question 5
    1 / -0
    If $$l, m, n$$ are the d.cs of the line joining $$(5, -3, 8)$$ and $$(6, -1, 6)$$ then $$l + m + n=$$
    Solution
    The line joining $$(5,-3,8)$$ and $$(6,-1,6)$$ is given by the vector $$-i+2j-2k.$$  
    Hence, the direction cosines are given by: 
    $$l=\cfrac{1}{\sqrt{1^2+2^2+(-2)^2} }=\cfrac{1}{3}$$, $$m=\cfrac{2}{\sqrt{1^2+2^2+(-2)^2}}=\cfrac{2}{3}$$, $$n=\cfrac{-2}{\sqrt{1^2+2^2+(-2)^2}}=\cfrac{-2}{3}$$
    $$\Rightarrow l+m+n=\cfrac{1}{3}$$
  • Question 6
    1 / -0
    If $$\dfrac{1}{2}, \displaystyle \dfrac{1}{2}$$, $$n(n<0)$$ are the dcs of a line, then the angle made by that line with $$OZ$$ where $$O=(0,0,0)$$ is
    Solution
    Given $$l=\dfrac{1}{2}, m=\dfrac{1}{2} , n$$ as the d.c's of a line.
    Let $$\gamma $$ be the angle which the line makes with $$OZ$$ axis i.e. $$\cos\gamma=n$$
    We know that 
    $$l^2+m^2+n^2=1$$
    $$\Rightarrow n^2=\dfrac{1}{2}$$
    $$\Rightarrow n=\pm \dfrac{1}{\sqrt{2}}$$
    Since, $$n<0$$
    $$\Rightarrow n=-\dfrac{1}{\sqrt{2}}$$
    $$\Rightarrow \cos \gamma =-\dfrac{1}{\sqrt{2}}$$
    $$\Rightarrow \gamma =-\cos {45^0}$$
    $$\Rightarrow \gamma =135^{0}$$
  • Question 7
    1 / -0
    If the direction ratios of two lines are given by $$3lm-4ln+mn=0$$ and $$l+2m+3n=0$$, then the angle between the lines is
    Solution

    Given $$3lm-4ln+mn=0$$    ...$$(1)$$

     and $$l+2m+3n=0$$    ....$$(2)$$

    From equation $$(2)$$, $$l=-(2m+3n)$$, putting in equation $$(1)$$, we get

    $$-3\left( 2m+3n \right) m+4\left( 2m+3n \right) n+mn=0\\ \Rightarrow -6{ m }^{ 2 }+12{ n }^{ 2 }=0\Rightarrow m=\pm \sqrt { 2 } n$$

    Now, $$m=\pm \sqrt { 2 } n\Rightarrow l=-\left( 2\sqrt { 2 } n+3n \right) =-\left( 2\sqrt { 2 } +3 \right) n$$

    $$\therefore l:m:n=-\left( 3+2\sqrt { 2 }  \right) n:\sqrt { 2 } n:n=-\left( 3+2\sqrt { 2 }  \right) :-\sqrt { 2 } :1$$

    Also, $$m=-\sqrt { 2 } n\Rightarrow l=-\left( -2\sqrt { 2 } +3 \right) n$$

    $$\therefore l:m:n=-\left( 3-2\sqrt { 2 }  \right) n:-\sqrt { 2 } n:n=-\left( 3-2\sqrt { 2 }  \right) :-\sqrt { 2 } :1$$


    $$\displaystyle \Rightarrow \cos { \theta  } =\dfrac { \left( 3+2\sqrt { 2 }  \right) \left( 3-2\sqrt { 2 }  \right) +\left( \sqrt { 2 }  \right) \left( -\sqrt { 2 }  \right) +1.1 }{ \sqrt { { \left( 3+2\sqrt { 2 }  \right)  }^{ 2 }+{ \left( \sqrt { 2 }  \right)  }^{ 2 }+{ 1 }^{ 2 } } \sqrt { { \left( 3-2\sqrt { 2 }  \right)  }^{ 2 }+{ \left( -\sqrt { 2 }  \right)  }^{ 2 }+{ 1 }^{ 2 } }  } $$

    $$\displaystyle \Rightarrow \theta =\dfrac { \pi  }{ 2 } $$

  • Question 8
    1 / -0
    If $$P = (3, 4, 5)$$, $$Q= (4, 6, 3)$$, $$R= (-1, 2, 4)$$ and $$S=(1, 0, 5)$$ are four points, then the projection of $$RS$$ on $$PQ$$ is
    Solution

    Let $$P(3,4,5)$$ $$Q(4,6,3)$$ $$R(-1,2,4)$$ and $$S(1,0,5)$$ be any four points.

    The dr's of the line $$PQ$$ are $$(1,2,-2)$$

    The dr's of the line $$RS$$ are $$(2,-2,1)$$

    The projection of $$RS$$ on $$PQ$$ will be $$RS \times \cos \theta $$

    $$RS \cos\theta$$ $$=$$ $$\displaystyle \dfrac{PQ \times RS}{|PQ|}$$

                    

    $$=$$ $$\displaystyle \dfrac{(i+2j-2k).(2i-2j+k)}{3}$$   $$=$$ $$\displaystyle \dfrac{4}{3}$$

  • Question 9
    1 / -0
    If the projections of the line segment $$AB$$ on the coordinate axes are $$2, 3, 6$$, then the square of the sine of the angle made by $$AB$$ with $$x=0$$, is
    Solution
    Projections of the line segment $$AB$$ on coordinate axes are $$2,3,$$ and $$6$$
    $$\therefore$$ the line can be $$L: 2\hat i + 3\hat j + 6\hat k$$
    Angle of line $$L$$ with $$x = 0\>i.e.\>\hat j$$ is:

    $$\cos\theta = \dfrac{L\cdot\hat j}{|L||j|} = \dfrac{(2\hat i + 3\hat j + 6\hat k)\cdot\hat j}{|(2\hat i + 3\hat j + 6\hat k)||j|} = \dfrac{3}{7}$$

    $$\sin^2\theta = 1 - \cos^2\theta = 1 - \left(\dfrac{3}{7}\right)^2 = \dfrac{40}{49}$$
  • Question 10
    1 / -0
    If $$(2, 1, 3)$$ and $$(-1, 2, 4)$$ are the extremities of a diagonal of a rhombus then the d.rs of the other diagonal are
    Solution
    $$(2, 1, 3)$$ and $$(-1, 2, 4)$$ are extremities of a diagonal of a rhombus. 
    Hence, the direction ratios of that diagonal are equal to $$2-(-1), 1-2, 3-4$$.
    So, the direction ratios are $$3, -1, -1$$. 
    In rhombus the diagonals are perpendicular to each other. Suppose the direction ratios of the other diagonal are $$l. m , n$$. So, $$3l -m - n$$ should be equal to zero.
    $$3l-m-n = 0$$
    Only option B satisfies this condition. Hence the direction ratios are $$-2,\; 3\;, -9\;$$.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now