Self Studies

Three Dimensional Geometry Test - 26

Result Self Studies

Three Dimensional Geometry Test - 26
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If the projections of the line segment $$AB$$ on the coordinate axes are $$2, 3, 6$$, then the sum of the d.cs of the line $$AB$$ is
    Solution
    Let $$\overrightarrow { AB } =l\hat { i } +m\hat { j } +n\hat { k } $$
    Projection of $$AB$$ on $$x,y,z$$ axis are $$l,m,n$$ respectively
    $$\overrightarrow { AB } .\hat { i } =l=2$$
    $$\overrightarrow { AB } .\hat { j } =m=3$$
    $$\overrightarrow { AB } .\hat { k } =n=6$$
    $$\overrightarrow { AB } =2\hat { i } +3\hat { j } +6\hat { k } $$
    $$\left| \overrightarrow { AB }  \right| =\sqrt { { 2 }^{ 2 }+{ 3 }^{ 2 }+{ 6 }^{ 2 } } =7$$
    DR's of $$\overrightarrow { AB } $$ are $$(2,3,6)$$
    DR's of $$\left( \dfrac { 2 }{ 7 } ,\dfrac { 3 }{ 7 } ,\dfrac { 6 }{ 7 }  \right) $$
    Sum of DR's $$\dfrac { 2+3+6 }{ 7 } =\dfrac { 11 }{ 7 } $$
  • Question 2
    1 / -0
    If $$l,m,n$$ are the d.cs of a line and $$l=\displaystyle \dfrac{1}{3}$$, then the maximum value of $$l\times m\times n $$ is
    Solution
    Given that $$l=\dfrac {1}{3}$$
    Now, $$l^2+m^2+n^2=1$$
    $$m^2+n^2=\dfrac {8}{9}$$
    Using A.M $$\geq$$ GM,
    $$\dfrac { { m }^{ 2 }+{ n }^{ 2 } }{ 2 } \ge \sqrt { { m }^{ 2 }{ n }^{ 2 } } $$
    $$\Rightarrow \dfrac { 4 }{ 9 } \ge mn$$
    Therefore, $$lmn  \leq \dfrac { 4 }{ 27 } $$
  • Question 3
    1 / -0
    lf the projections ofthe line segment$${A}{B}$$ on the $$yz$$-plane, $$zx$$-plane, $$xy$$-plane are $$\sqrt{160}, \sqrt{153},5$$ respectively, then the projection of $${A}{B}$$ on the $${z}$$-axis is
    Solution
    Let $$\overrightarrow { AB } =l\hat { i } +m\hat { j } +n\hat { k } $$ 
    $$l,m,n$$ are projections of $$\overrightarrow { AB } $$ on $$x,y,z$$ respectively 
    Projection of $$\overrightarrow { AB } $$ on $$yz$$ plane $$=\sqrt { { m }^{ 2 }+{ n }^{ 2 } } =\sqrt { 160 } $$
    Projection of $$\overrightarrow { AB } $$ on $$zx$$ plane $$=\sqrt { { n }^{ 2 }+{ l }^{ 2 } } =\sqrt { 153 } $$
    Projection of $$\overrightarrow { AB } $$ on $$xy$$ plane $$=\sqrt { { l }^{ 2 }+{ m }^{ 2 } } =5$$
    $$\left( { m }^{ 2 }+{ n }^{ 2 } \right) -\left( { n }^{ 2 }+{ l }^{ 2 } \right) =160-153$$
    $$\left( m-l \right) \left( m+l \right) =7$$
    $$\Rightarrow m=4,\quad l=3,\quad n=12$$
    Projection of $$AB$$ on $$z-$$ axis $$=n=12$$
  • Question 4
    1 / -0
    A point $$P$$ lies on a line whose ends are $$A(1,2,3)$$ and $$B(2,10,1).$$ If $$z$$ component of $$P$$ is $$7,$$ then the coordinates of $$P$$ are
    Solution
    The equation of line passing through $$A$$ and $$B$$ is $$\displaystyle\frac { x-1 }{ 2-1 } =\frac { y-2 }{ 10-2 } =\frac { z-3 }{ 1-3 } \Rightarrow \frac { x-1 }{ 1 } =\frac { y-2 }{ 8 } =\frac { z-3 }{ -2 } =r$$
    Substitute $$z=7$$, we get
    $$\Rightarrow \displaystyle \frac { x-1 }{ 1 } =\frac { y-2 }{ 8 } =\frac { 7-3 }{ -2 } =-2$$
    Solve it to get $$x=1-2=-1$$, $$y=2-16=-14$$
    So $$P:$$ $$\left( -1,-14,7 \right) $$
  • Question 5
    1 / -0
    lf the direction ratios of two lines are given by the equations $$2l+2m-n=0$$ and $$ml+nl+lm=0$$, then the angle between the two lines is
    Solution
    $$2l+2m=n ...............(1)$$ and $$mn+nl+lm=0......(2)$$
    $$\Rightarrow 2lm+2m^2+2l^2+2lm+lm=0$$
    $$\Rightarrow 2m^2+5lm+2l^2=0$$
    On factorisation, we get
    $$(m+2l)(2m+l)=0$$
    $$\Longrightarrow m=−2l$$
    $$\therefore m=\dfrac{-l}{2}$$
    Put $$l=1$$
    then $$d_1=(1,-2,-2,)$$ 
    and $$d_2=(1,\dfrac{-1}{2},1)$$
    $$d_1.d_2=0$$ for right angle $$i.e. 90$$
  • Question 6
    1 / -0
    If OA is equally inclined to OX, OY and OZ and if A is $$\sqrt{3} $$ units from the origin, then A is
    Solution
    Let $$\alpha $$ be the angle inclined by $$OA$$ with $$OX$$ , $$\beta$$ be the angle inclined by $$OA$$ with $$OY$$ and $$\gamma$$ be the angle inclined by $$OA$$ with $$OZ$$
    We have $$\cos ^{ 2 }{ \alpha  } +\cos ^{ 2 }{ \beta  } +\cos ^{ 2 }{ \gamma  } =1$$
    Given $$\alpha=\beta=\gamma$$
    So, we get $$\cos\alpha=\cos\beta=\cos\gamma=\cfrac{1}{\sqrt3}$$
    Therefore, $$A$$ is $$(OA\cos\alpha,OA\cos\beta,OA\cos\gamma) = (1,1,1)$$ 
  • Question 7
    1 / -0
    If the d.rs of two lines are given by the equations $$l+m+n=0$$ and $$2lm-mn+2nl=0$$, then the angle between the two lines is
    Solution
    Given, $$l+m+n=0$$ and $$2lm-mn+2nl=0$$
    $$2lm+2nl-mn=0$$
    $$2l(m+n)-mn=0$$
    $$-2(m+n)(m+n)-mn=0$$
    $$2(m+n)^{2}+mn=0$$
    $$2m^2+5mn+2n^2=0$$
    Hence by applying quadratic formula, we get
    $$m=\dfrac{-5n\pm3n}{4}$$

    $$m=\dfrac{-n}{2}$$ and $$m={-2n}$$
    Therefore, the corresponding values of l are $$n$$ and $$\dfrac{-n}{2}$$
    Hence, the drs of one line is (-2n,n,n)
    And d.r.s of other is $$(\dfrac{-n}{2},n,\dfrac{-n}{2})$$

    Hence, the drs will be in the ration
    $$(-2,1,1)$$ and $$(-1,2,-1)$$
    Taking dot product, we get
    $$(-2)(-1)+(1)(2)+(1)(-1)=\sqrt{6}\sqrt{6}cos\theta$$
    $$3=6\cos\theta$$
    $$\theta=60^0$$
    Hence, angle between the lines will be $$60^0$$ and $$180^0-60^0$$
    $$=120^0$$
  • Question 8
    1 / -0
    lf the $$\mathrm{D.R}$$s of two lines are given by the equations $$l+m+n=0$$ and $$l^{2}+m^{2}-n^{2}=0$$, then the angle between the two lines is:
    Solution
    Given that $$l+m=-n$$
    Substituting $$n$$ in $$l^2+m^2-n^2=0$$, we get 
    $$l^2+m^2-(l+m)^2=0$$
    $$\Rightarrow lm=0$$
    $$\Rightarrow l=0$$ or $$m=0$$
    Substituting in $$l+m=-n$$, we get 
    $$m=-n$$ or $$l=-n$$
    Now, $$(l,m,n)=(0,-n,n)$$ or $$(-n,0,n)$$
    Therefore, d.r.s are $$(0,-1,1)$$ or $$(-1,0,1)$$
    Now, angle between two lines $$\cos { \theta  } =\dfrac { \left( 0,-1,1 \right) .\left( -1,0.1 \right)  }{ \sqrt { { \left( -1 \right)  }^{ 2 }+{ 1 }^{ 2 } } \sqrt { { \left( -1 \right)  }^{ 2 }+{ 1 }^{ 2 } }  } =\dfrac { 1 }{ 2 } $$
    $$\Rightarrow \theta= \cos ^{-1}\left (\dfrac {1}{2}\right)$$
    $$\Rightarrow \theta =\dfrac { \pi  }{ 3 } $$
    Ans: A
  • Question 9
    1 / -0
    I. If the d.cs of two non-parallel lines satisfy $$1+m+n=0$$ and $$l^{2}+m^{2}-n^{2}={0}$$, then the angle between the line is $$ \dfrac{\pi }{3}$$ 
    II. If the d.rs of two non-parallel lines are $$(0,\lambda, -\lambda)$$ and $$(\mu, 0,-\mu)$$, then angle between the lines is $$\displaystyle \dfrac{\pi}{3} (\lambda>0, \mu>0)$$
    Solution
    Given that $$l+m=-n$$
    Substituting $$n$$ in $$l^2+m^2-n^2=0$$
    We get $$l^2+m^2-(l+m)^2=0$$
    $$\Rightarrow lm=0$$
    $$\Rightarrow l=0$$ or $$m=0$$
    Substituting in $$l+m=-n$$ 
    We get $$m=-n$$ or $$l=-n$$
    Now, $$(l,m,n)=(0,-n,n)$$ or $$(-n,0,n)$$
    Therefore, d.r.s are $$(0,-1,1)$$ or $$(-1,0,1)$$
    Now, angle between two lines $$\cos { \theta  } =\dfrac { \left( 0,-1,1 \right) .\left( -1,0.1 \right)  }{ \sqrt { { \left( -1 \right)  }^{ 2 }+{ 1 }^{ 2 } } \sqrt { { \left( -1 \right)  }^{ 2 }+{ 1 }^{ 2 } }  } =\dfrac { 1 }{ 2 } $$
    $$\Rightarrow \theta =\dfrac { \pi  }{ 3 } $$
    Both A and R are correct but R is not the correct explanation for A. 

    Ans: B
  • Question 10
    1 / -0

    Assertion $$({A})$$ . The direction ratios of the line joining origin and point $$(x,y, z)$$ must be $$x, y, {z}$$

    Reason (R): lf $$P(x, y, z)$$ is a point in space and $$|{OP}|={r},$$ then the direction cosines of $${O}{P}$$ are $$\displaystyle \dfrac{x}{r}$$ , $$\displaystyle \dfrac{y}{r}$$ , $$\displaystyle \dfrac{z}{r}$$

    Solution
    Assertion: Let $$P(x,y,z)$$
    $$\overrightarrow { OP } =x\hat { i } +y\hat { j } +z\hat { k } $$
    DR of $$\overrightarrow { OP } $$ is any vector parallel to $$x\hat { i } +y\hat { j } +z\hat { k } $$
    So, given assertion is false. 
    Reason: 
    $$\overrightarrow { OP } =\left( x\hat { i } +y\hat { j } +z\hat { k }  \right) \lambda $$
    $$\overrightarrow { OP } =\lambda \sqrt { { x }^{ 2 }+{ y }^{ 2 }+{ z }^{ 2 } } =r$$
    $$\alpha ,\beta ,\gamma $$ be angles made by $$\overrightarrow { OP } $$ with $$x,y,z$$ axes respectively 
    $$\cos { \alpha  } =\dfrac { \overrightarrow { OP } .\hat { i }  }{ \left| \overrightarrow { OP }  \right| \left| \hat { i }  \right|  } =\dfrac { x }{ r } $$
    $$\cos { \beta  } =\dfrac { \overrightarrow { OP } .\hat { j }  }{ \left| \overrightarrow { OP }  \right| \left| \hat { j }  \right|  } =\dfrac { y }{ r } $$
    $$\cos { \gamma  } =\dfrac { \overrightarrow { OP } .\hat { k }  }{ \left| \overrightarrow { OP }  \right| \left| \hat { k }  \right|  } =\dfrac { z }{ r } $$ 
    DC of $$\overrightarrow { OP } $$ are $$\dfrac { x }{ r } ,\dfrac { y }{ r } ,\dfrac { z }{ r } $$
    Reason is true.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now