Self Studies

Three Dimensional Geometry Test - 27

Result Self Studies

Three Dimensional Geometry Test - 27
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The projection of a directed line segment on the co-ordinate axes are $$12,4,3$$, then the direction cosines of the line are
    Solution

    $$x=12,y=4,z=3$$

    Direction cosines $$\displaystyle =\dfrac{x}{\sqrt{x^{2}+y^{2}+z^{2}}} ,\displaystyle \dfrac{y}{\sqrt{x^{2}+y^{2}+z^{2}}},\dfrac{z}{\sqrt{x^{2}+y^{2}+z^{2}}} $$ 

    $$\displaystyle = \dfrac{12}{13},\dfrac{4}{13},\dfrac{3}{13}$$

    Hence, option 'B' is correct.

  • Question 2
    1 / -0
    A line OP where O $$=$$ $$(0, 0, 0)$$ makes equal angles with ox, oy, oz. The point on OP, which is at a distance of $$6$$ units from O is:
    Solution
    Let $$l,m,n$$ be the direction cosines. 
    We have $$l^2+m^2+n^2=1$$. 
    Given that $$l=m=n$$ $$\Rightarrow 3l^2=1$$. 
    Solving we get $$l=\dfrac{1}{\sqrt{3}}$$. 
    Any point on the line is a multiple of direction cosines. 
    Let the point P is given by $$(\dfrac{k}{\sqrt{3}},\dfrac{k}{\sqrt{3}},\dfrac{k}{\sqrt{3}})$$. 
    Using the distance formula we get, $$k=6$$.
  • Question 3
    1 / -0
    The direction ratios of a normal to the plane through $$(1, 0, 0)$$ and $$(0, 1, 0)$$, which makes an angle of $$\dfrac {\pi}{4}$$ with the plane $$x+y=3$$, are:
    Solution
    Let $$A(1,0,0)$$ & $$B(0,1,0)$$ be two points on the plane and direction ratio of its normal be $$ai+bj+ck$$, then $$(ai+bj+ck). \vec{BA}=0$$
    $$\Rightarrow (ai+bj+ck).(i-j)=0$$
    $$\Rightarrow a=b$$      ....(1)
    Since, $$ai+bj+ck$$ makes an angle $$\dfrac {\pi}{4}$$ with $$x+y-3=0$$
    Therefore, $$\cos { \dfrac { \pi  }{ 4 }  } =\dfrac { \left( ai+bj+ck \right) .\left( i+j \right)  }{ \sqrt { \left( a^{ 2 }+{ b }^{ 2 }+{ c }^{ 2 } \right) \left( { 1 }^{ 2 }+{ 1 }^{ 2 } \right)  }  } $$
    $$\Rightarrow \dfrac { 1 }{ \sqrt { 2 }  } =\dfrac { a+b }{ \sqrt { 2\left( a^{ 2 }+{ b }^{ 2 }+{ c }^{ 2 } \right)  }  } =\dfrac { 2a }{ \sqrt { 2\left( 2a^{ 2 }+{ c }^{ 2 } \right)  }  } $$      ....[ from (1) ]
    $$\Rightarrow 2a^{ 2 }+{ { c }^{ 2 } }=4{ a }^{ 2 }$$
    $$\Rightarrow c=\pm \sqrt { 2 } a$$
    Therefore, direction ratios are $$\left( a,b,c \right) =\left( a,a,\pm \sqrt { 2 } a \right) =\left( 1,1,\pm \sqrt { 2 }  \right) $$

    Ans: B
  • Question 4
    1 / -0
    What is the equation of the plane which passes through the z-axis and its perpendicular to the line $$\dfrac {x-a}{cos\theta}=\dfrac {y+2}{sin\theta}=\dfrac {z-3}{0} ?$$
    Solution
    Given plane is passing through z-axis, $$i.e$$ it also passes through origin
    Hence equation of plane passing through origin and perpendicular to line
    $$\dfrac{x-a}{cos\theta}=\dfrac{y+2}{sin\theta}=\dfrac{z-3}{0}$$ is given by,
    $$cos\theta (x)+sin\theta(y)+0(z)=0$$
    $$\Rightarrow x+y tan\theta =0$$
  • Question 5
    1 / -0
    If a line makes an angle of $$\dfrac {\pi}{4}$$ with the positive direction of each of $$x$$-axis and $$y$$-axis, then the angle that the line makes with the positive direction of $$z$$-axis is-
    Solution
    let $$\alpha$$, $$\beta$$ and $$\gamma$$ be the angle made by the line with co-ordinate axes.
    Therefore, $$\cos ^{ 2 }{ \alpha  } +\cos ^{ 2 }{ \beta  } +\cos ^{ 2 }{ \gamma  } =1$$
    $$\Rightarrow \cos ^{ 2 }{ \dfrac { \pi  }{ 4 }  } +\cos ^{ 2 }{ \dfrac { \pi  }{ 4 }  } +\cos ^{ 2 }{ \gamma  } =1$$
    $$\Rightarrow \cos ^{ 2 }{ \gamma  } =0$$

    $$\Rightarrow \gamma =\dfrac { \pi  }{ 2 } $$

    Ans: C
  • Question 6
    1 / -0
    The equation of the plane passing through the lines $$\frac {x-4}{1}=\frac {y-3}{1}=\frac {z-2}{2}$$ and $$\frac {x-3}{1}=\frac {y-2}{-4}=\frac {z}{5}$$ is-
    Solution
    Normal vector of the plane is given by,
    $$\vec{n} = \begin{vmatrix} \hat{i}&\hat{j}&\hat{k}\\1&1&2\\1&-4&5 \end{vmatrix}=9\hat{i}-3\hat{j}-5\hat{k}$$
    Hence equation of plane is,
    $$ (\vec{r} - (3\hat{i}+2\hat{j}))\cdot \vec{n}=0$$
    $$\Rightarrow 9x-3y-5z-21=0$$
  • Question 7
    1 / -0
    A line makes an angle $$\theta$$ with each of the $$x$$- and $$z$$- axes. If the angle $$\beta$$, which it makes with the $$y$$-axis, is such that $$\sin^2\beta=3 \sin^2\theta$$, then $$\cos^2\theta$$ equals-
    Solution
    Given that $$\sin^2\beta=3 \sin^2\theta$$     ...$$(1)$$
    Let $$\theta$$, $$\theta$$ and $$\beta$$ be the angle made by the line with co-ordinate axes.
    Therefore, $$\cos ^{ 2 }{ \theta  } +\cos ^{ 2 }{ \theta  } +\cos ^{ 2 }{ \beta  } =1$$
    $$\Rightarrow 2\cos ^{ 2 }{ \theta  }=\sin ^{ 2 }{ \beta  }=3\sin ^{ 2 }{ \theta  }=3-3\cos ^{ 2 }{ \theta  }$$     from $$(1)$$
    Therefore, $$\cos ^{ 2 }{ \theta  }=\dfrac {3}{5}$$

    Ans: C
  • Question 8
    1 / -0

    For waht value of $$\lambda$$ , the three numbers $$2\lambda  - 1 , \frac{1}{4}, \lambda -\frac{1}{2}$$ can be the direction cosines of a straight line?

    Solution
    for being direction cosines of straight line,
    $$(2\lambda -1 )^2 + \left ( \dfrac{1}{4} \right )^2+ \left ( \lambda -\dfrac{1}{2} \right )^2 =1$$
    $$4\lambda^2 -4 \lambda + y+\dfrac{1}{16} + \lambda^2-\lambda +\dfrac{1}{4} =\lambda$$
    $$5\lambda^2 -5 \lambda + \dfrac{5}{16}=0$$
    $$16 \lambda^2 -16 \lambda +1=0$$
    $$\displaystyle \lambda =\dfrac{16 \pm \sqrt{256 - 64}}{32}$$
    $$\displaystyle =\dfrac{16 \pm \sqrt{13}}{32}=\dfrac{1}{2} \pm \dfrac{\sqrt{3}}{4}$$
  • Question 9
    1 / -0
    If the foot of the perpendicular from the origin to a plane is $$P(a, b, c)$$, the equation of the plane is-
    Solution

    $$  {\textbf{Step - 1: Find direction ratio}} $$

                      $$  {\text{Let the foot of the perpendicular be P(a,b,c)}}{\text{.}} $$

                     $$  {\text{Then, direction ratios of OP are }} {\text{a - 0,b - 0,c - 0 }}\;{\text{i}}{\text{.e}}{\text{ a,b,c}} $$

    $$  {\textbf{Step - 2: Make equation}} $$

                     $$  {\text{So, the equation of the plane passing through P(a,b,c), }} $$

                     $$  {\text{the direction ratios of the normal to which are a,b,c is}} $$

                     $$  {\text{a(x - a) + b(y - b) + c(z - c) = 0}} $$

                     $$   \Rightarrow {\text{ax + by + cz = }}{{\text{a}}^2}{\text{ + }}{{\text{b}}^2}{\text{ + }}{{\text{c}}^2}{\text{.}} $$

    $$  {\textbf{Hence,correct answer is option C}}{\text{.}} $$

     

     

  • Question 10
    1 / -0
    If the points $$(-1, 3, 2), (-4, 2, -2)$$ and $$(5, 5, \lambda)$$ are collinear, then $$\lambda$$ is equal to
    Solution
    Let the points be $$A(-1,3,2) B(-4,2,-2) C(5,5,\lambda)$$
    Direction ratio of $$AB{=}(-3,-1,-4)$$
    If $$A,B,C$$ are collinear points then direction ratio of $$AB$$ and $$BC$$ must be proportional.
    Direction ratio of $$BC{=}(9,3,\lambda+2)$$
    $$\therefore 9{=}\alpha (-3)$$
    $$\therefore 3{=}\alpha(-1)$$
    $$\therefore \lambda+2{=}\alpha(-4)$$ and $$\alpha{=} -3$$
    $$\therefore \dfrac{\lambda+2}{-3}{=}-4$$
    $$\therefore \lambda{=} 10$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now