Self Studies

Three Dimensional Geometry Test - 31

Result Self Studies

Three Dimensional Geometry Test - 31
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If the image of the point $$\displaystyle \left ( 1, \: 1, \: 1 \right )$$ by a plane $$\displaystyle \left ( 3, \: -1, \: 5 \right )$$ then the equation of the plane is
    Solution
    Let $$A = (1,1,1)$$ and $$A'=(3,-1,5)$$
    So mid point of $$AA'$$ is $$(2,0,3)$$
    and direction ratio of $$AA'$$ are $$2,-2$$ and $$4$$.
    Since $$A'$$ is the image of $$A$$ so equation of plane is given by,
    $$2(x-2)-2(y-0)+4(z-3)=0$$
    $$\Rightarrow  x-y+2z=8$$
  • Question 2
    1 / -0
    Which of the triplet can not represent direction cosine of a line
    Solution
    In general, the direction cosine of a line is defined as the cosine of the angles between the positive directed lines and the coordinate axes.
    So the direction cosine of a line $$(\dfrac{2}{\sqrt 25},\dfrac{3}{\sqrt 25},\dfrac{4}{\sqrt 25})$$ cannot be represented in triplet form 
    Option D is right answer 
  • Question 3
    1 / -0
    The direction cosines of the normal to the plane $$\displaystyle 5\left ( x - 2 \right ) = 3\left ( y - z \right )$$ are
    Solution
    Given plane is, $$5(x-2) = 3(y-z)$$
    $$\Rightarrow 5x-3y+3z-10 = 0$$
    So direction ratios of normal to the plane are $$5, -3$$ and $$3$$.
    Thus direction cosines are, $$\dfrac{5}{\sqrt{5^2+3^2+3^2}}, -\dfrac{3}{\sqrt{5^2+3^2+3^2}}, \dfrac{3}{\sqrt{5^2+3^2+3^2}}$$
    or $$ \dfrac{5}{\sqrt{43}}, \dfrac{-3}{\sqrt{43}}, \dfrac{3}{\sqrt{43}}$$
  • Question 4
    1 / -0
    The position vectors of three points are $$2\vec{a}-\vec{b}+3\vec{c}$$, $$\vec{a}-2\vec{b}+\lambda \vec{c}$$ and $$\mu \vec{a}-5\vec{b}$$ where $$\vec{a}, \vec{b}, \vec{c}$$ are non coplanar vectors, then the points are collinear when
    Solution
    When points $$x, y, z$$ are collinear, we have $$\alpha x + \beta y = (\alpha + \beta)z$$
    Similarly, $$x(2\vec{a} - \vec{b} + 3\vec{c}) + y(\vec{a} - 2\vec{b} + \lambda \vec{c}) = (x + y)(\mu \vec{a} - 5\vec{b})$$
    $$\Rightarrow$$ comparing the coefficients of $$\vec{a} \rightarrow 2x + y = x\mu + y\mu $$
    $$\vec{b} \rightarrow - x - 2y = - 5x - 5y$$
    $$\vec{c} \rightarrow 3x + \lambda y = 0$$
    $$\Rightarrow 4x = -3y$$ and so $$\lambda = \dfrac{9}{4}$$
    Also, $$\mu = -2$$
  • Question 5
    1 / -0
    The angle between the straight lines $$\displaystyle \frac { x+1 }{ 2 } =\frac { y-2 }{ 5 } =\frac { z+3 }{ 4 } $$ and $$\displaystyle \frac { x-1 }{ 1 } =\frac { y+2 }{ 2 } =\frac { z-3 }{ -3 } $$ is
    Solution
    The direction ratios of the lines are $${ a }_{ 1 }=2,{ b }_{ 1 }=5,{ c }_{ 1 }=4,{ a }_{ 2 }=1,{ b }_{ 2 }=2,{ c }_{ 2 }=-3$$
    Thus $$\cos { \theta  } =\displaystyle\frac { { a }_{ 1 }{ a }_{ 2 }+{ b }_{ 1 }{ b }_{ 2 }+{ c }_{ 1 }{ c }_{ 2 } }{ \sqrt { { \left( { a }_{ 1 } \right)  }^{ 2 }+{ \left( { b }_{ 1 } \right)  }^{ 2 }+{ \left( { c }_{ 1 } \right)  }^{ 2 } } \sqrt { { \left( { a }_{ 2 } \right)  }^{ 2 }+{ \left( { b }_{ 2 } \right)  }^{ 2 }+{ \left( { c }_{ 2 } \right)  }^{ 2 } }  } $$
    $$\Rightarrow \cos { \theta  } =\displaystyle\frac { 2\times 1+5\times 2+4\times -3 }{ \sqrt { { \left( 2 \right)  }^{ 2 }+{ \left( 5 \right)  }^{ 2 }+{ \left( 4 \right)  }^{ 2 } } \sqrt { { \left( 1 \right)  }^{ 2 }+{ \left( 2 \right)  }^{ 2 }+{ \left( -3 \right)  }^{ 2 } }  } =0$$
    $$\Rightarrow \theta =\cos ^{ -1 }{ 0 } =\dfrac { \pi  }{ 2 } $$
  • Question 6
    1 / -0
    Let $$A= \left ( 1,2,2 \right )$$, $$B=\left ( 2,3,6 \right )$$and $$C= \left ( 3,4,12 \right )$$. The direction cosines of a line equally inclined with $$OA,OB$$ and $$OC$$ , where $$O$$ is the origin, are
    Solution
    Let the direction cosines of the line be $$(a,b,c)$$
    Since it's equally inclined to $$OA,\; OB,\; OC$$
    $$ \dfrac{a+2b+2c}{3}=\dfrac{2a+3b+6c}{7}=\dfrac{3a+4b+12c}{13}=k$$
    $$ \Rightarrow a+2b+2c=3k...(1) \\ 2a+3b+6c=7k ....(2)\\ 3a+4b+12c=13k....(3)$$
    Eliminating $$a$$ from $$(1)$$ and $$(2)$$, we get 
    $$b-2c=-k....(3)$$
    Similarly, eliminating $$a$$ from $$(1)$$ and $$(3)$$, we get
    $$2b-6c=-4k...(4)$$
    From $$(3)$$ and $$(4)$$, we get $$b=c=k...(5)$$
    Using the above value in $$(1)$$ we get $$a=-k....(6)$$
    From $$(5)$$ and $$(6)$$, $$a:b:c=-1:1:1$$
    Also, $$a^2+b^2+c^2=1 \Rightarrow k= \pm \dfrac{1}{\sqrt{3}}$$
    Hence, direction cosines are $$ \left(-\dfrac{1}{\sqrt{3}}, \dfrac{1}{\sqrt{3}}, \dfrac{1}{\sqrt{3}} \right)$$ or $$ \left(\dfrac{1}{\sqrt{3}}, -\dfrac{1}{\sqrt{3}}, -\dfrac{1}{\sqrt{3}} \right)$$
  • Question 7
    1 / -0
    A st. line which makes angle of $$\displaystyle 60^{\circ}$$ with each of y - and z - axes, is inclined with x - axis at an angle
    Solution
    As we know in $$3D$$ the relation between angles made by a vector with $$x$$ axis $$(x),y$$ axis $$(y), z$$ axis$$(z)$$ is:-

    $${\cos}^{2}{x}+{\cos}^{2}{y}+{\cos}^{2}{z}=1$$

    $$\Rightarrow\,{\cos}^{2}{{60}^{\circ}}+{\cos}^{2}{{60}^{\circ}}+{\cos}^{2}{z}=1$$

    $$\Rightarrow\,{\left(\dfrac{1}{2}\right)}^{2}+{\left(\dfrac{1}{2}\right)}^{2}+{\cos}^{2}{z}=1$$

    $$\Rightarrow\,\dfrac{1}{4}+\dfrac{1}{4}+{\cos}^{2}{z}=1$$

    $$\Rightarrow\,\dfrac{2}{4}+{\cos}^{2}{z}=1$$

    $$\Rightarrow\,\dfrac{1}{2}+{\cos}^{2}{z}=1$$

    $$\Rightarrow\,{\cos}^{2}{z}=1-\dfrac{1}{2}=\dfrac{1}{2}$$

    $$\Rightarrow\,\cos{z}=\dfrac{1}{\sqrt{2}}$$

    $$\therefore\,z={45}^{\circ}$$

  • Question 8
    1 / -0
    Find the equations of the plane through the point $$\displaystyle \left ( x_{1},y_{1},z_{1} \right )$$ and perpendicular to the straight line $$\displaystyle \frac{x-\alpha }{l}=\frac{y-\beta }{m}=\frac{z-\gamma }{n}$$
    Solution
    Since the line is perpendicular to the plane, hence the normal vector of the plane is parallel to the direction vector of the line.
    Hence the equation of the plane will be 
    $$l(x)+m(y)+n(z)=d$$
    It is given that the plane passes through $$x_{1},x_{2},x_{3}$$
    Hence 
    $$lx_{1}+my_{1}+nz_{1}=d$$
    Substituting in the equation of the plane, we get 
    $$lx+my+nz=lx_{1}+my_{1}+nz_{1}$$
    Or 
    $$l(x-x_{1})+m(y-y_{1})+n(z-z_{1})=0$$
  • Question 9
    1 / -0
    Which of the following triplets give the direction cosines of a line ?
    Solution
    If $$l,m,n$$  are the directions cosine of a line then $$l^2+m^2+n^2=1$$
    Thus we get $$\dfrac{1}{\sqrt3},\dfrac{1}{\sqrt3},\dfrac{1}{\sqrt3}$$
    Option D is correct answer 
  • Question 10
    1 / -0
    If a line makes angles $$\displaystyle \alpha ,\beta ,\gamma $$ with axes of co-ordinates, then $$\displaystyle \cos 2\alpha +\cos 2\beta +\cos 2\gamma$$ is equla to
    Solution
    We know that direction cosines are $$\cos\alpha, \cos\beta, \cos\gamma$$
    Then sum of the squares of the direction cosine is 1
    $$i.e. \cos^2\alpha+\cos^2\beta+\cos^2\gamma =1$$
    we know Trignometric identity that  $$ \sin^2A+\cos^2A=1$$
    From the above identity we can write as $$\cos^2A=1-\sin^2A$$
    Now replacing we get $$ (1-\sin^2\alpha) + (1-\sin^2\beta) + (1-\sin^2\gamma)$$
    By adding all we get $$ 3-(\sin^2\alpha+\sin^2\beta+\sin^2\gamma)=1$$
    $$\therefore \cos2\alpha+\cos2\beta+\cos2\gamma = 2-3 = -1$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now