Self Studies

Three Dimensional Geometry Test - 32

Result Self Studies

Three Dimensional Geometry Test - 32
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Let the direction - cosines of the line which is equally inclined to the axis be $$\displaystyle \pm \frac{1}{\sqrt{k}}$$. Find $$k$$ ?
    Solution
    We know sum of the squares of the direction cosines is one.
    But it is given that $$\alpha=\beta=\gamma$$
    $$\therefore cos^2\alpha+cos^\alpha+cos^2\alpha=1$$
    $$3cos^2\alpha=1$$
    $$cos^2\alpha=\dfrac{1}{3}$$
    Thus $$\cos\alpha=\dfrac{1}{\sqrt3}$$
    $$\therefore \dfrac{1}{\sqrt k}=\dfrac{1}{\sqrt 3}$$
    Taking squares on both sides we get 
    $$\therefore k=3$$




  • Question 2
    1 / -0
    If a line makes an angle $$\displaystyle \theta_1, \theta_2, \theta_3$$ which the axis respectively, then $$\displaystyle cos 2\theta_1 + cos 2 \theta_2 + cos 2 \theta_3 = ?$$
    Solution
    Let $$P(x,y,z)$$ be any point on the line OP, D-Ratio of OP are x,y,z. D.R. of normal plane$$ i.e.,z = 0 $$are$$ 0, 0, 1 $$
    $$\sin\theta_1=\dfrac{z}{\sqrt{x^2+y^2+z^2}}$$
    similarily for $$ sin\theta_2$$ and $$sin \theta_3$$
    $$\therefore sin^2\theta_1 + sin^2\theta_2 + sin^2\theta_3$$
    $$=\dfrac{x^2+y^2+z^2}{x^2+y^2+z^2}=1$$
    $$\Longrightarrow 1-cos^2\theta_1+ 1-cos^2\theta_2+ 1-cos^2\theta_3=1$$
    $$\therefore cos^\theta_1+cos^\theta_2+cos^\theta_3=3-1=2$$
  • Question 3
    1 / -0
    The direction ratios of a normal to the plane through $$\left( 1,0,0 \right) ,\left( 0,1,0 \right) ,$$ which makes an angle of $$\displaystyle \frac { \pi  }{ 4 } $$ with the plane $$x+y=3$$ are 
    Solution

    Any plane through $$\left( 1,0,0 \right) $$ is 


    $$A\left( x-1 \right) +B\left( y-0 \right) +C\left( z-0 \right) =0$$   ...$$(1)$$


    It contains $$\left( 0,1,0 \right) $$ if $$-A+B=0$$   ....$$(2)$$


    Also, $$(1)$$ makes an angle of $$\displaystyle \dfrac { \pi  }{ 4 } $$ with the plane $$x+y=3$$


    Therefore, $$\displaystyle \cos { \dfrac { \pi  }{ 4 }  } =\dfrac { \left| A+B \right|  }{ \sqrt { { A }^{ 2 }+{ B }^{ 2 }+{ C }^{ 2 } } \sqrt { { 1 }^{ 2 }+{ 1 }^{ 2 } }  } $$


    $$\Rightarrow { \left( A+B \right)  }^{ 2 }={ A }^{ 2 }+{ B }^{ 2 }+{ C }^{ 2 }\Rightarrow 2AB={ C }^{ 2 }$$    ....$$(3)$$


    From (2) and (3), $${ C }^{ 2 }=2{ A }^{ 2 }\Rightarrow C=\pm \sqrt { 2 } A$$


    Hence, $$A:B:C::A:A:\pm \sqrt { 2 } A$$


    $$\therefore$$ direction ratios are $$1:1:\pm \sqrt { 2 } $$

  • Question 4
    1 / -0
    let $$P(4,1,\lambda)$$ and $$Q(2,-1,\lambda)$$ be two points. A line having direction ratios $$1,-1,6$$ is perpendicular to the plane passing through the origin, $$P$$ and $$Q$$, then $$\lambda$$ equals
    Solution
    By given point $$P\left( 4,1,\lambda  \right) $$ and $$Q\left( 2,-1,\lambda  \right) $$
    $$\begin{vmatrix} 1 & \lambda  \\ -1 & \lambda  \end{vmatrix},\begin{vmatrix} \lambda  & 4 \\ \lambda  & 2 \end{vmatrix},\begin{vmatrix} 4 & 1 \\ 2 & -1 \end{vmatrix}\\ \Rightarrow \left( \lambda +\lambda  \right) ,\left( 2\lambda -4\lambda  \right) ,\left( -4-2 \right) \\ \Rightarrow -2\lambda ,2\lambda ,6\\ \Rightarrow -2\lambda =1,2\lambda =-1$$
    $$\displaystyle \Rightarrow \lambda =-\frac { 1 }{ 2 } $$
  • Question 5
    1 / -0
    $$\bar a,\bar b,\bar c$$ are three non-zero vectors such that any two of them are non-collinear. If  $$\bar a+\bar b$$ is collinear with  $$\bar c$$ and  $$\bar b+\bar c$$ is collinear with $$\bar a$$, then what is their sum?
    Solution
    We have
    $$\bar a+\bar b =t\bar c$$ ----$$(1)$$
    $$\bar b+\bar c =s\bar a$$ ----$$(2)$$
    From $$(1)$$ and $$(2)$$
    $$\bar a+\bar b=t(s\bar a-\bar b)$$
    Since no two of them are collinear, comparing coeffficients gives
    $$st=1$$ and $$t=-1$$
    $$\Rightarrow s=-1$$ and $$t=-1$$
    From $$(1)$$
    $$\therefore \bar a+\bar b+\bar c=0$$
    Hence, option $$B$$.
  • Question 6
    1 / -0
    The equation of plane through $$(1, 2, 3)$$ and parallel to the plane $$\bar{r}.\left ( \hat{3i}+\hat{4j}+\hat{5k} \right )=0$$
    Solution
    Equation of plane passing through $$(1,2,3)$$ and parallel to plane $$\vec{r} \cdot (3\hat{i}+4\hat{j}+5\hat{k} = 0$$  is given by,
    $$ (\vec{r}-(\hat{i}+2\hat{j}+3\hat{k}) )\cdot (3\hat{i}+4\hat{j}+5\hat{k}) = 0$$
    $$\Rightarrow \vec{r} \cdot (3\hat{i}+4\hat{j}+5\hat{k}) -(\hat{i}+2\hat{j}+3\hat{k}) \cdot (3\hat{i}+4\hat{j}+5\hat{k} ) = 0$$
    $$\Rightarrow \vec{r}\cdot (3\hat{i}+4\hat{j}+5\hat{k} )- 26 = 0$$
    Hence, option 'A' is correct.
  • Question 7
    1 / -0
    The acute angle between two lines whose direction ratios are $$2,3,6$$ and $$1,2,2$$ is
    Solution
    We have $${ a }_{ 1 }=2,{ b }_{ 1 }=3,{ c }_{ 1 }=6,{ a }_{ 2 }=1,{ b }_{ 2 }=2,{ c }_{ 2 }=2$$
    If $$\theta$$ is the angle between two lines whose direction ratios are given, then
    $$\cos { \theta  } =\displaystyle\frac { { a }_{ 1 }{ a }_{ 2 }+{ b }_{ 1 }{ b }_{ 2 }+{ c }_{ 1 }{ c }_{ 2 } }{ \sqrt { { \left( { a }_{ 1 } \right)  }^{ 2 }+{ \left( { b }_{ 1 } \right)  }^{ 2 }+{ \left( { c }_{ 1 } \right)  }^{ 2 } } \sqrt { { \left( { a }_{ 2 } \right)  }^{ 2 }+{ \left( { b }_{ 2 } \right)  }^{ 2 }+{ \left( { c }_{ 2 } \right)  }^{ 2 } }  } $$
    $$\Rightarrow \cos { \theta  } =\displaystyle \frac { 2\times 1+3\times 2+6\times 2 }{ \sqrt { { \left( 2 \right)  }^{ 2 }+{ \left( 3 \right)  }^{ 2 }+{ \left( 6 \right)  }^{ 2 } } \sqrt { { \left( 1 \right)  }^{ 2 }+{ \left( 2 \right)  }^{ 2 }+{ \left( 2 \right)  }^{ 2 } }  } =\frac { 20 }{ 21 }$$
    $$ \Rightarrow \theta =\cos ^{ -1 }{ \dfrac { 20 }{ 21 }  } $$

  • Question 8
    1 / -0

    Directions For Questions

    Consider the two planes $$ p_{1}\::\:2x-3y+z=4\: $$ & $$ \:p_{2}\::\: x-y+z=-1 $$
    On the basis of above information answer the following question:

    ...view full instructions

    Equation of the plane which passes through the point (-1, 3, 2) & is $$ \perp  $$ to each of the planes $$ p_{1} $$ & $$ p_{2} $$ is
    Solution
    Normal of $$p1 = [ 2  -3  1 ]$$

    Normal of $$p2 = [ 1  -1  1 ]$$

    If planes are perpendiculars then dot products of their normals must be 0,

    So consider normal of desired plane is $$[ a  b  c]$$

    Hence,
    $$ 2a - 3b + c = 0 $$ (Dot product with normal of p1)

    $$ a - b + c = 0 $$ (Dot product with normal of p2)

    Solving above 2 we get ,
    $$a - 2b = 0 $$

    So if we use normals of planes in option b & d,

    we notice that they don't satisfy the above equation

    We observe that option a does not pass through (-1, 3, 2)

    Since on substitution ,

    $$ 2.(-1) + 3 + 2 + 1 \neq 0 $$

    The correct answer is $$2x+y-z+1=0$$
  • Question 9
    1 / -0

    Directions For Questions

    Let $$A$$ be the given point whose position vectors with reference to origin $$O$$ be $$ \overrightarrow{a}$$ and $$ \overrightarrow{ON}= \overrightarrow{n}$$ Let $$P$$ be any point such that $$\overline{OP}= \overrightarrow{r}$$ lies on the plane & passes through $$A$$ and orthogonal to $$ON$$. Then for any point $$P$$ lies on the plane then.$$\overrightarrow{AP} \perp  \overrightarrow{n}$$
    $$\displaystyle \therefore \overrightarrow{AP}.\ \overrightarrow{n}=0$$
    $$\displaystyle \Rightarrow \left ( \overrightarrow{OP}-\overrightarrow{OA} \right ).\overrightarrow{n}=0$$
    $$\displaystyle \Rightarrow  \overrightarrow{r}\cdot \overrightarrow{n}=\overrightarrow{a}.\overrightarrow{n}$$       $$($$Knows as scalar product form$$)$$
    $$\displaystyle \Rightarrow  \overrightarrow{r}\cdot \overrightarrow{n}=p,$$ where $$p$$ is the $$\perp$$er distance from origin to the plane.
    On the bases of above information answer the following questions

    ...view full instructions

    Equation of the plane passing through a point with position vector $$\displaystyle  3\hat{i}-3\hat{j}+\hat{k} $$ & normal to the line joining the points with position vectors $$\displaystyle  3\hat{i}+4\hat{j}-\hat{k} $$ & $$\displaystyle  2\hat{i}-\hat{j}=5\hat{k} $$ is
    Solution
    $$\displaystyle \left ( \overline{r} - \overline{a}  \right )\cdot \overline{n}=0$$
    $$\displaystyle  \Rightarrow \overline{r} \cdot \overline{n}= \overline{a} \cdot \overline{n}$$ where $$ \displaystyle \overline{n}=AB= -\hat{i}-5\hat{j}+6\hat{k}$$
    $$\displaystyle  \Rightarrow \overline{r} \cdot \left ( -\hat{i}-5\hat{j}+6\hat{k} \right )=\left ( 3\hat{i}-3\hat{j}+\hat{k} \right ) \cdot \left ( -\hat{i}-5\hat{j}+6\hat{k} \right )$$
    $$\displaystyle  \Rightarrow \overline{r} \cdot \left ( \hat{i}+5\hat{j}-6\hat{k} \right )+18=0$$
    Hence the correct option becomes c.
  • Question 10
    1 / -0
    If a point $$P$$ in the space such that $$\overline{OP}$$ is inclined to $$OX$$ at $$45$$ and $$OZ$$ to $$60$$ then $$\overline{OP}$$ inclined to $$OY$$ is
    Solution
    $$\displaystyle l=\cos { { 45 }^{ O } } =\frac { 1 }{ \sqrt { 2 }  } $$ and $$\displaystyle m=\cos { { 60 }^{ O } } =\frac { 1 }{ 2 } $$
    $$\displaystyle \Rightarrow { n }^{ 2 }=1-\frac { 1 }{ 2 } -\frac { 1 }{ 4 } =\frac { 1 }{ 4 } \Rightarrow n=\pm \frac { 1 }{ 2 } $$
    So $$\alpha ={ 60 }^{ O }$$ or $${ 120 }^{ O }$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now