Self Studies

Three Dimensional Geometry Test - 33

Result Self Studies

Three Dimensional Geometry Test - 33
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The equation of the plane which bisect the join of point $$(7, 2, 3)$$ and $$(-1, -4, 3)$$ perpendicularly is
    Solution
    Lets assume $$P = (7, 2, 3)$$ and $$Q = (-1, -4, 3)$$
    So mid point of $$PQ$$ is$$ (3, -1, 3) = M$$ (say), since plane bisect $$PQ$$ so $$M$$ will lie in required plane.
    Also direction ratios of $$PQ$$ are $$8, 6, 0$$.
    Also given $$PQ$$ is perpendicular to the plane, thus equation of plane is given by,
    $$8(x-3)+6(y+1)+0(z-3)=0$$
    $$\Rightarrow 4x+3y-9=0$$
  • Question 2
    1 / -0

    Directions For Questions

    Let $$A$$ be the given point whose position vectors with reference to origin $$O$$ be $$ \overrightarrow{a}$$ and $$ \overrightarrow{ON}= \overrightarrow{n}$$ Let $$P$$ be any point such that $$\overline{OP}= \overrightarrow{r}$$ lies on the plane & passes through $$A$$ and orthogonal to $$ON$$. Then for any point $$P$$ lies on the plane then.$$\overrightarrow{AP} \perp  \overrightarrow{n}$$
    $$\displaystyle \therefore \overrightarrow{AP}.\ \overrightarrow{n}=0$$
    $$\displaystyle \Rightarrow \left ( \overrightarrow{OP}-\overrightarrow{OA} \right ).\overrightarrow{n}=0$$
    $$\displaystyle \Rightarrow  \overrightarrow{r}\cdot \overrightarrow{n}=\overrightarrow{a}.\overrightarrow{n}$$       $$($$Knows as scalar product form$$)$$
    $$\displaystyle \Rightarrow  \overrightarrow{r}\cdot \overrightarrow{n}=p,$$ where $$p$$ is the $$\perp$$er distance from origin to the plane.
    On the bases of above information answer the following questions

    ...view full instructions

    Vector equation of the plane passing through a point having position vector $$\displaystyle 2\hat{i}+3\hat{j}-4\hat{k}$$ and perpendicular to the vector $$\displaystyle 2\hat{i}-\hat{j}+2\hat{k}$$ is
    Solution
    Using $$\displaystyle \left ( \overrightarrow{r} - \overrightarrow{a}  \right )\cdot \overrightarrow{n}=0$$
    i.e.$$\displaystyle \overrightarrow{r} \cdot \overrightarrow{n}= \overrightarrow{a} \cdot \overrightarrow{n}$$
    $$\displaystyle  \overrightarrow{r}\cdot \left ( 2\hat{i}-\hat{j}+2\hat{k} \right )= \left ( 2\hat{i}+3\hat{j}-4\hat{k} \right ) \cdot  \left ( 2\hat{i}-\hat{j}+2\hat{k} \right )$$
    $$\displaystyle \Rightarrow \overrightarrow{r} \cdot \left ( 2\hat{i}-\hat{j}+2\hat{k} \right )=4-3-8 $$
    $$\displaystyle \Rightarrow \overrightarrow{r} \cdot \left ( 2\hat{i}-\hat{j}+2\hat{k} \right )= -7 $$
    Hence option (a) is correct.
  • Question 3
    1 / -0
    A line makes the same angle $$\theta $$ with each of the $$x$$ and $$z$$ axis. If the angle $$\beta $$ , which it makes with $$y-$$axis is such that $$\sin ^{2}\beta =3\sin ^{2}\theta $$  then $$\cos ^{2}\theta$$ equals 
    Solution
    If a line makes the angle $$\alpha,\beta,\gamma$$ with x,y,z axix respectively then
    $$l^{2}+m^{2}+n^{2}=1$$
    $$\Rightarrow 2l^{2}+m^{2}=1 \: or \: 2n^{2}+m^{2}=1$$
    $$\Rightarrow 2\cos^{2}\theta=1- \cos ^{2} \beta\left ( \alpha=\gamma=\theta \right )$$
    $$2 \cos ^{2}\theta = \sin ^{2} \beta$$
    $$\Rightarrow 2\cos ^{2} \theta = 3\sin ^{2} \theta$$
    $$\Rightarrow 5\cos ^{2} \theta=3$$
  • Question 4
    1 / -0
    The line passes through the points $$\left ( 5,1,a \right )$$ & $$\left ( 3,b,1 \right )$$ crosses the $$yz$$ plane at the point $$\displaystyle \left ( 0,\frac{17}{2},-\frac{13}{2} \right )$$ ,then
    Solution
    Equation of the line through the points $$( 5,1,a  ) $$ & $$( 3,b,1)$$ is
    $$\displaystyle \frac{x-5}{3-5}=\frac{y-1}{b-1}=\frac{z-a}{1-a}=\lambda $$
    Now it passes through $$\displaystyle \left ( 0,\frac{17}{2},\frac{-13}2{} \right )$$
    $$\displaystyle \therefore \frac{0-5}{-2}=\frac{17/2-1}{b-1}=\frac{-13/2-a}{1-a}=\lambda  \:$$
    $$ \Rightarrow \lambda =\dfrac{5}{2}$$
    $$\displaystyle \therefore \frac{17/2-1}{b-1}=\frac{5}{2} $$
    $$\Rightarrow b=4$$
    and $$\displaystyle \frac{-13/2-a}{1-a}=\frac{5}{2} $$
    $$\Rightarrow a=6$$
  • Question 5
    1 / -0
    If the three points with position vectors $$\displaystyle \bar{a}-2\bar{b}+3\bar{c}, \ 2\bar{a}+\lambda \bar{b}-4\bar{c}, \ -7\bar{b}+10\bar{c} $$ are collinear, then $$\displaystyle \lambda= $$
    Solution
    The given vectors are collinear, so $$l(\bar{a} - 2\bar{b} + 3\bar{c}) + k(2\bar{a} + \lambda\bar{b} - 4\bar{c}) = (l + k)(-7\bar{b} + 10\bar{c})$$
    Comparing the coefficients of $$\bar{a} \rightarrow l + 2k = 0 $$
    $$\bar{b} \rightarrow -2l + \lambda k = -7l -7k$$
    $$\bar{c} \rightarrow 3l - 4k = 10l + 10k$$
    $$\Rightarrow l = -2k$$ and so $$\lambda = 3$$
  • Question 6
    1 / -0
    Find the equation of the plane containing the vectors $$\displaystyle \bar{\alpha} $$ and $$\displaystyle\bar{ \beta} $$ and passing through the point $$\displaystyle \bar{a} $$
    Solution
    Normal vector to the plane is, $$\bar{\alpha}\times \bar{\beta}$$
    Thus equation of plane passing through $$\vec{a}$$ is given by,
    $$(\vec{r}-\vec{a})\cdot (\bar{\alpha}\times \bar{\beta})=0$$
  • Question 7
    1 / -0
    The number of lines which are equally inclined to the axes is

    Solution
    If a line makes angles $$\alpha,\beta,\gamma$$ with the axes we have $$\alpha = \beta = \gamma $$
    $$cos \alpha = cos \beta = cos \gamma$$,  or $$l = m = n .$$
    $$ l^2 + m^2 + n^2 = 1$$
    $$l^2 + l^2 + l^2 = 1$$
    $$3l^2=1$$
    $$l^2=\dfrac{1}{3}$$
    $$\therefore l=\pm\dfrac {1}{\sqrt3}$$
    $$\therefore ( l, m, n)(-l , -m , -n )$$ represent the d.c's of the same line.
    Since there are four different groups of signs, 
    so there can be four different lines which makes equal angles with axes.
  • Question 8
    1 / -0
    Direction cosines of the vector $$\displaystyle \bar{v}=a_{1}\hat{i}+a_{2}\hat{j}+a_{3}\hat{k}$$ are
    Solution
    The directions cosines will be
    $$\dfrac{a_{1}}{\sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}},\dfrac{a_{2}}{\sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}},\dfrac{a_{3}}{\sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}}$$

    $$\Rightarrow\dfrac{a_{1}}{|\overline{v}|},\dfrac{a_{2}}{|\overline{v}|},\dfrac{a_{3}}{|\overline{v}|}$$

  • Question 9
    1 / -0
    The acute angle between the lines $$ x =-2 + 2t, y = 3 -4t, z = -4 + t$$ and $$ x= 2 -t, y= 3 + 2t, z= -4 + 3t $$ is
    Solution
    Given lines are $$ x =-2 + 2t, y = 3 -4t, z = -4 + t$$ and $$ x= 2 -t, y= 3 + 2t, z= -4 + 3t $$
    $$\Rightarrow \displaystyle\frac { x+2 }{ 2 } =\displaystyle\frac { y-3 }{ -4 } =\displaystyle\frac { z+4 }{ 1 } $$ and $$\displaystyle\frac { x-2 }{ -1 } =\displaystyle\frac { y-3 }{ 2 } =\displaystyle\frac { z+4 }{ 3 } $$
    if $$a_{1},b_{1},c_{1}$$ and $$a_{2},b_{2},c_{2}$$ are direction ratios of two lines, then angle between them is
    $$\cos\theta = \displaystyle\frac{a_{1}a_{2}+b_{1}b_{2}+c_{1}c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}}\sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}$$
    $$\Rightarrow \cos\theta = \displaystyle\frac{-1}{\sqrt{6}}$$
    $$\Rightarrow \theta = \pi-\cos ^{ -1 }{ \left(\displaystyle \frac { 1 }{ \sqrt { 6 }  }  \right)  } $$
    Hence, acute angle between the lines is $$\cos ^{ -1 }{ \left(\displaystyle \frac { 1 }{ \sqrt { 6 }  }  \right)  }$$
  • Question 10
    1 / -0

    Directions For Questions

    $$\displaystyle L_{1}: \frac{x\, +\, 1}{-3}= \frac{y\, -\, 3}{2}= \frac{y\, +\, 2}{1}$$

    $$\displaystyle L_{2}, : \, \frac{x}{1}= \frac{y\, -\, 7}{-3}= \frac{z\, +\, 7}{2}$$

    ...view full instructions

    Equation of a plane containing $$L_{1}$$ and $$L_{2}$$ is
    Solution
    Normal vector of the plane is given by,
    $$\vec{n} = \begin{vmatrix}

    \hat{i}&\hat{j}&\hat{k}\\-3&2&1\\1&-3&2

    \end{vmatrix}=7\hat{i}+7\hat{j}+7\hat{k}=7(\hat{i}+\hat{j}+\hat{k})$$
    Hence equation of plane is,
    $$ (\vec{r} - (7\hat{j}-7\hat{k}))\cdot \vec{n}=0$$
    $$\Rightarrow 7(x-0)+7(y-7)+7(z+7)=0$$
    $$\Rightarrow x+y+z=0$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now