Self Studies

Three Dimension...

TIME LEFT -
  • Question 1
    1 / -0

    Directions For Questions

    Let $$A$$ be the given point whose position vectors with reference to origin $$O$$ be $$ \overrightarrow{a}$$ and $$ \overrightarrow{ON}= \overrightarrow{n}$$ Let $$P$$ be any point such that $$\overline{OP}= \overrightarrow{r}$$ lies on the plane & passes through $$A$$ and orthogonal to $$ON$$. Then for any point $$P$$ lies on the plane then.$$\overrightarrow{AP} \perp  \overrightarrow{n}$$
    $$\displaystyle \therefore \overrightarrow{AP}.\ \overrightarrow{n}=0$$
    $$\displaystyle \Rightarrow \left ( \overrightarrow{OP}-\overrightarrow{OA} \right ).\overrightarrow{n}=0$$
    $$\displaystyle \Rightarrow  \overrightarrow{r}\cdot \overrightarrow{n}=\overrightarrow{a}.\overrightarrow{n}$$       $$($$Knows as scalar product form$$)$$
    $$\displaystyle \Rightarrow  \overrightarrow{r}\cdot \overrightarrow{n}=p,$$ where $$p$$ is the $$\perp$$er distance from origin to the plane.
    On the bases of above information answer the following questions

    ...view full instructions

    The Equation of the plane through a point $$\displaystyle  2\hat{i}-\hat{j}+4\hat{k} $$ & parallel to the plane $$\displaystyle \overline{r}.\left ( 2\hat{i}+4\hat{j}-7\hat{k} \right )=6$$ is

  • Question 2
    1 / -0

    If the foot of the perpendicular from the origin to a plane is $$\displaystyle \left ( a,b,c \right )$$, the equation of the plane is

  • Question 3
    1 / -0

    Let $$N$$ be the foot of the perpendicular of length $$p$$, from the origin to a plane and $$l$$, $$m$$, $$n$$ be the direction cosines of $$ON$$, the equation of the plane is

  • Question 4
    1 / -0

    Directions For Questions

    Let $$A$$ be the given point whose position vectors with reference to origin $$O$$ be $$ \overrightarrow{a}$$ and $$ \overrightarrow{ON}= \overrightarrow{n}$$ Let $$P$$ be any point such that $$\overline{OP}= \overrightarrow{r}$$ lies on the plane & passes through $$A$$ and orthogonal to $$ON$$. Then for any point $$P$$ lies on the plane then.$$\overrightarrow{AP} \perp  \overrightarrow{n}$$
    $$\displaystyle \therefore \overrightarrow{AP}.\ \overrightarrow{n}=0$$
    $$\displaystyle \Rightarrow \left ( \overrightarrow{OP}-\overrightarrow{OA} \right ).\overrightarrow{n}=0$$
    $$\displaystyle \Rightarrow  \overrightarrow{r}\cdot \overrightarrow{n}=\overrightarrow{a}.\overrightarrow{n}$$       $$($$Knows as scalar product form$$)$$
    $$\displaystyle \Rightarrow  \overrightarrow{r}\cdot \overrightarrow{n}=p,$$ where $$p$$ is the $$\perp$$er distance from origin to the plane.
    On the bases of above information answer the following questions

    ...view full instructions

    The scalar product form of equation of plane $$\displaystyle \overline{r}=\left ( s-2t \right )\hat{i}+\left ( 3-t \right )\hat{j}+\left ( 2s-t \right )\hat{k}$$ is

  • Question 5
    1 / -0

    For what value of $$m$$, the points $$(3,5)$$, $$(m,6)$$ and $$\begin{pmatrix} \dfrac { 1 }{ 2 },\dfrac {15 }{ 2 } \end{pmatrix}$$ are collinear?

  • Question 6
    1 / -0

    If $${ l }_{ 1 },{ m }_{ 1 },{ n }_{ 1 }$$ and $${ l }_{ 2 },{ m }_{ 2 },{ n }_{ 2 }$$ are DCs of the two lines inclined to each other at an angle $$\theta$$, then the DCs of the internal bisector of the angle between these lines are

  • Question 7
    1 / -0

    If the projection of a line segment on $$x,y$$ and $$z$$ axes are respectively $$3,4$$ and $$5$$, then the length of the line segment is

  • Question 8
    1 / -0

    Find the value of $$p$$ for which the points $$(-5,1)$$, $$(1,p)$$ and $$(4, -2)$$ are collinear.

  • Question 9
    1 / -0

    The position vectors of point $$A$$ and $$B$$ are $$\hat { i } -\hat { j } +3\hat { k } $$ and $$3\hat { i } +3\hat { j } +3\hat { k } $$ respectively. The equation of a plane is $$r.\left( 5\hat { i } +2\hat { j } -7\hat { k }  \right) +9=0$$. The point $$A$$ and $$B$$

  • Question 10
    1 / -0

    Lines $$OA,OB$$ are drawn from $$O$$ with direction cosines proportional to $$(1,-2,-1),(3,-2,3).$$ Find the direction cosines of the normal to the plane $$AOB$$

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now