Self Studies

Three Dimensional Geometry Test - 35

Result Self Studies

Three Dimensional Geometry Test - 35
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If the points $$(p,0)$$, $$(0,q)$$ and $$(1,1)$$ are collinear, then $$\dfrac { 1 }{ p }+\dfrac { 1 }{ q }$$ is equal to:
    Solution

    As the points are collinear, the slope of the line joining

    any two points, should be same as the slope of the line joining two other

    points.

    Slope of the line passing through points $$\left( { x }_{ 1 },{ y }_{ 1 }

    \right) $$ and $$\left( { x }_{ 2 },{ y }_{ 2 } \right)$$ $$ = $$ $$\dfrac { { y

    }_{ 2 }-{ y }_{ 1 } }{ { x }_{ 2 }-x_{ 1 } } $$

    So, slope of the line joining $$ (p,0) , (0,q) = $$ Slope of the line joining

    $$ (0,q) $$ and $$ (1,1) $$

    $$ \dfrac { q - 0 }{ 0 - p } = \dfrac { 1 - q }{ 1 - 0 } $$

    $$ - \dfrac { q }{ p } = 1 - q $$

    Dividing both sides by $$q$$,
    $$ - \dfrac { 1 }{ p } =  \dfrac { 1 }{ q } - 1 $$

    $$ => \dfrac { 1 }{ p } +  \dfrac { 1 }{ q } = 1 $$
  • Question 2
    1 / -0
    The direction ratios of two lines are $$1,-2,-2$$ and $$0,2,1$$. The direction cosines of the line perpendicular to the above lines are 
    Solution
    Let $$a,b,c$$ be the direction ratios of the line whose direction cosines are required. 
    Then as this line is perpendicular to the given lines so we have
    $$a(1)+b(-2)+c(-2)=0$$ and $$a(0)+b(2)+c(1)=0$$
    Solving these simultaneously, we get
    $$\displaystyle \frac { a }{ \left( -2 \right) \left( 1 \right) -\left( -2 \right) \left( 2 \right)  } =\frac { b }{ \left( -2 \right) \left( 0 \right) -\left( 1 \right) \left( 1 \right)  } =\frac { c }{ \left( 1 \right) \left( 2 \right) -\left( 0 \right) \left( -2 \right)  } $$
    $$\displaystyle \Rightarrow \frac { a }{ 2 } =\frac { b }{ -1 } =\frac { c }{ 2 } \Rightarrow a:b:c=2:-1:2$$
    Therefore the required direction cosines are
    $$\displaystyle \frac { 2 }{ \sqrt { { 2 }^{ 2 }+{ 1 }^{ 2 }+{ 2 }^{ 2 } }  } ,\frac { -1 }{ \sqrt { { 2 }^{ 2 }+{ 1 }^{ 2 }+{ 2 }^{ 2 } }  } ,\frac { 2 }{ \sqrt { { 2 }^{ 2 }+{ 1 }^{ 2 }+{ 2 }^{ 2 } }  } \Rightarrow \frac { 2 }{ 3 } ,\frac { -1 }{ 3 } ,\frac { 2 }{ 3 } $$
  • Question 3
    1 / -0
    If the foot of the perpendicular from the origin to a plane is $$\left( a,b,c \right) ,$$ the equation of the plane is 
    Solution
    Let $$P\left( a,b,c \right) $$ be the foot of the perpendicular from the origin to the plane, then direction ratios of $$OP$$ are $$a-0,b-0,c-0$$ i.e. $$a,b,c.$$
    So the equation of the plane passing through $$P\left( a,b,c \right) $$, the direction ratios of the normal to which are $$a,b,c$$ is
    $$a\left( x-a \right) +b\left( y-b \right) +c\left( z-c \right) =0$$
    $$\Rightarrow ax+by+cz={a}^{2}+{b}^{2}+{c}^{2}$$
  • Question 4
    1 / -0
    Are the points (1, 1), (2, 3) and (8, 11) collinear ?
    Solution
    Area of triangle formed by these vertices is 
    $$\displaystyle \Delta =\frac { 1 }{ 2 } \begin{vmatrix} 1 & 1 & 1 \\ 2 & 3 & 1 \\ 8 & 11 & 1 \end{vmatrix}$$
    Applying $${ R }_{ 2 }\rightarrow { R }_{ 2 }-{ R }_{ 1 },{ R }_{ 3 }\rightarrow { R }_{ 3 }-{ R }_{ 1 }$$
    $$\displaystyle \Delta =\frac { 1 }{ 2 } \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 0 \\ 7 & 10 & 0 \end{vmatrix}=\frac { 1 }{ 2 } \left( 10-14 \right) =2$$
    Hence points are non collinear 
  • Question 5
    1 / -0
    The angle between the straight lines whose direction cosines are given by $$2l+2m-n=0,mn+nl+lm=0$$, is
    Solution
    Relations are $$2l-2m-n=0\Rightarrow n=2l+2m$$ and $$mn+nl+lm=0$$.
    Eliminating $$n$$, we have $$(m+l)(2l+2m)+lm=0$$
    $$\Rightarrow2{ l }^{ 2 }+5lm+2{ m }^{ 2 }=0$$
    $$\Rightarrow \left( 2l+m \right) \left( l+2m \right) =0$$
    When $$2l+m=0$$, we have from $$2l+2m-n=0,n=m.$$
    Thus $$\displaystyle \frac { l }{ -1 } =\frac { m }{ 2 } =\frac { n }{ 2 } ,$$
    $$\Rightarrow$$ d.c's of one line are proportional to $$[-1,2,2]$$.
    Again, when $$l+2m=0$$, we have from $$2l+2m-n=0,n=l$$
    $$\displaystyle \therefore \frac { l }{ 2 } =\frac { m }{ -1 } =\frac { n }{ 2 } ,$$
    $$\Rightarrow$$ d.c's of the other line are proportional to $$[2,-1,2]$$.
    Now, if $$\theta$$ be the angle between the two lines, then 
    $$\displaystyle \cos { \theta  } =\frac { -1.2+2.-1+2.2 }{ \sqrt { \left( { 1 }^{ 2 }+{ 2 }^{ 2 }+{ 2 }^{ 2 } \right)  } \sqrt { \left( { 2 }^{ 2 }+{ 1 }^{ 2 }+{ 2 }^{ 2 } \right)  }  } =0,$$
    $$\Rightarrow \displaystyle \theta =\frac { \pi  }{ 2 } $$ or the two lines are at right angles to each other.
  • Question 6
    1 / -0
    The planes $$3x-y+z+1=0,5x+y+3z=0$$ intersect in the line $$PQ$$. The equation of the plane through the point $$(2,1,4)$$ and perpendicular to $$PQ$$ is
    Solution
    Let $$[l,m,n]$$ be the direction cosines of $$PQ$$, then $$3l-m+n=0$$ and $$5l+m+3n=0$$
    $$\displaystyle \therefore \frac { l }{ -3-1 } =\frac { m }{ 5-9 } =\frac { n }{ 3+5 } \Rightarrow \frac { l }{ 1 } =\frac { m }{ 1 } =\frac { n }{ -2 } $$
    Now, a plane $$\bot$$ to $$PQ$$ will have $$l,m,n$$ as the coefficient of $$x,y$$ and $$z$$.
    Hence, the plane $$\bot$$ to $$PQ$$ is $$x+y-2z=\lambda$$
    It passes through $$(2,1,4)$$
    $$\therefore 2+1-2.4=\lambda \Rightarrow \lambda =-5$$
    Hence, the required plane is $$x+y-2z=-5$$
  • Question 7
    1 / -0

    Directions For Questions

    Given four points $$A(2, 1, 0); B(1, 0, 1); C(3, 0, 1)$$ and $$D(0, 0, 2)$$. The point $$D$$ lies on a line $$L$$ orthogonal to the plane determined by the point $$A, B$$ and $$C$$

    ...view full instructions

    Equation of the line $$L$$ is -
    Solution
    $$\textbf{Step-1: Find the normal vector of the plane using given information}$$

                     $$\text{Given four points A(2,1,0), B(1,0,1), C(3,0,1) and D(0,0,2)}$$

                     $$\text{From the given points, we have}$$

                     $$\vec{BA}=(2-1)\hat i+(1-0)\hat j+(0-1)\hat k$$, $$\vec{BC}=(3-1)\hat i+(0-0) \hat j+(1-1)\hat k$$

                     $$\vec{BA}=\hat i+\hat j- \hat k$$, $$\vec{BC}=2\hat i$$

                     $$\text{So, the normal vector of the plane containing}$$ $$ABC$$ $$\text{is}$$ 

                     $$\vec{BA}\times \vec{BC}=(2i)\times (\hat i+\hat j-\hat k)$$

                     $$=2(\hat j+\hat k)$$

                     $$\text{Since the line is orthogonal to the plane, hence its directional vector is}$$

                     $$\text{ parallel to the normal vector of the plane.}$$

                     $$\text{Therefore the direction vector of the line is}$$ $$(j+k)$$.

                     $$\text{Now, it passes through}$$ $$D=2k$$

                     $$\text{Therefore the required equation of the line is}$$

                     $$\vec{r}=2k+\lambda(j+k)$$

    $$\textbf{Hence, option - C is the answer}$$
  • Question 8
    1 / -0
    If direction ratios of the normal of the plane which contains the lines $$\displaystyle\frac{x-2}{3}=\displaystyle\frac{y-4}{2}=\displaystyle\frac{z-1}{1}\;\&\;\displaystyle\frac{x-6}{3}=\displaystyle\frac{y+2}{2}=\displaystyle\frac{z-2}{1}$$ are $$(a,\,1,\,-26)$$, then $$a$$ is equal to
    Solution
    $$\dfrac { x-2 }{ 3 } =\dfrac { y-4 }{ 2 } =\dfrac { z-1 }{ 1 }$$
    $$ \dfrac { x-6 }{ 3 } =\dfrac { y+2 }{ 2 } =\dfrac { z-2 }{ 1 } $$
    $$ (a,1,-26) \rightarrow $$ DR's of normal
    $$\Rightarrow { a }_{ 1 }{ a }_{ 2 }+{ b }_{ 1 }{ b }_{ 2 }+{ c }_{ 1 }{ c }_{ 2 }= 0$$
    $$ \Rightarrow 3(a)+(1)+1(-26) = 0$$
    $$ \Rightarrow  3a=24$$
    $$ \Rightarrow$$ $$a = 8$$
    Hence the answer is $$8.$$
  • Question 9
    1 / -0
    The equation of the plane which contains the lines $$\vec{r}\, =\, \hat{i}\, +\, 2 \hat{j}\, -\, \hat{k}\, +\, \lambda\, (\hat{i}\, +\, 2\, \hat{j}\, -\, \hat{k})$$ and $$\vec{r}\, =\, \hat{i}\, +\, 2 \hat{j}\, -\, \hat{k}\, +\, \mu\, (\hat{i}\, +\, \hat{j}\, +\, 3 \hat{k})$$ must be
    Solution
    Clearly lines are parallel to $$\hat{i}+2\hat{j}-\hat{k}$$ and $$\hat{i}+\hat{j}+3\hat{k}$$
    Thus normal vector of required plane is,
    $$\vec{n}=\begin{vmatrix} \hat{i}&\hat{j}&\hat{k}\\1&2&-1\\1&1&3\end{vmatrix}=7\hat{i}-4\hat{j}-\hat{k}$$
    Hence, required plane is
    $$[\vec{r}-(\hat{i}+2\hat{j}-\hat{k})]\cdot \vec{n}=0$$
    $$\Rightarrow [\vec{r}-(\hat{i}+2\hat{j}-\hat{k})]\cdot (7\hat{i}-4\hat{j}-\hat{k})=0$$
    $$\Rightarrow 7(x-1)-4(y-2)-(z+1)=0$$
  • Question 10
    1 / -0

    Directions For Questions

    In the shown figure, cuboid $$(AB = 4, AE = 3, AD = 5)$$ an insect can only crawl along the wall and it cannot fly.

    ...view full instructions

    The direction ratios of a line followed by the insect during its journey from A to G along the shortest path are

    Solution
    Paths teken can be three:
    $$i)AF$$ & $$FG=5+5=10$$
    $$ii) AE$$ & $$EG=3+\sqrt { 14 } $$
    $$iii)AB$$ & $$BG=4+\sqrt { 34 } $$
    shortest one is $$ii)$$ 
    $$\therefore A\longrightarrow E\longrightarrow G$$
    $$\therefore$$ direction ratio $$\therefore A\longrightarrow E=(0,0,3)\equiv (0,0,1)$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now