Self Studies

Three Dimensional Geometry Test - 36

Result Self Studies

Three Dimensional Geometry Test - 36
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The direction cosines of a vector $$\displaystyle \hat {i} + \hat {j} + \sqrt {2} \hat {k} $$ are 
    Solution
    Direction cosine of $$a\hat{i}+b\hat{j}+c\hat{k}$$ can be given as $$\dfrac{a}{\sqrt{a^2+b^2+c^2}}, \dfrac{b}{\sqrt{a^2+b^2+c^2}}\dfrac{c}{\sqrt{a^2+b^2+c^2}}$$
    Thus, here we have directional cosines as $$\dfrac{1}{\sqrt{1^2+1^2+(\sqrt 2)^2}}, \dfrac{1}{\sqrt{1^2+1^2+(\sqrt 2)^2}}, \dfrac{\sqrt 2}{\sqrt{1^2+1^2+(\sqrt 2)^2}}$$
    =$$\displaystyle \frac {1}{2} , \frac {1} {2} , \frac {1} {\sqrt 2} $$
  • Question 2
    1 / -0
    In the following cases, find the coordinates of the foot of the perpendicular drawn from the origin.
    $$3y+4z-6=0$$
    Solution
    Let the coordinates of the foot of perpendicular $$P$$ from the origin to the plane be $$({x}_{1}, {y}_{1}, {z}_{1})$$
    $$3y+4z-6=0$$
    $$\Rightarrow$$ $$0x+3y+4z=6=6....(1)$$
    The direction ratios of the normal are $$0,3$$ and $$4$$
    $$\therefore$$ $$\sqrt { 0+{ \left( 3 \right)  }^{ 2 }+{ \left( 4 \right)  }^{ 2 } } =5$$
    Dividing both sides of equation (1) by $$5$$, we obtain
    $$0x+\cfrac{3}{5}y+\cfrac{4}{5}z=\cfrac{6}{5}$$
    This equation is of the form $$lx+my+nz=d$$, where $$l,m,n$$ are the direction cosines of normal to the plane and $$d$$ is the distance of normal from the origin.
    The coordinates of the foot of the perpendicular are
    $$\left( 0,\cfrac { 3 }{ 5 } .\cfrac { 6 }{ 5 } ,\cfrac { 4 }{ 5 } .\cfrac { 6 }{ 5 }  \right) $$ i.e., $$\left( 0,\cfrac { 18 }{ 25 } ,\cfrac { 24 }{ 25 }  \right) $$
  • Question 3
    1 / -0
    In the following cases, find the coordinates of the foot of the perpendicular drawn from the origin.
    $$2x+3y+4z-12=0$$
    Solution
    Let the coordinates of the foot of perpendicular $$O$$ from the origin to the plane be $$({x}_{1}, {y}_{1}, {z}_{1})$$
    $$2x+3y+4z-12=0$$
    $$\Rightarrow$$ $$2x+3y+4z=12......(1)$$
    The direction ratios of normal are $$2,3$$ and $$4$$
    $$\therefore$$ $$\sqrt { { \left( 2 \right)  }^{ 2 }+{ \left( 3 \right)  }^{ 2 }+{ \left( 4 \right)  }^{ 2 } } =\sqrt { 29 } $$
    Dividing both sides of equation (1) by $$\sqrt {29}$$, we obtain
    $$\cfrac { 2 }{ \sqrt { 29 }  } x+\cfrac { 3 }{ \sqrt { 29 }  } y+\cfrac { 4 }{ \sqrt { 29 }  } z=\cfrac { 12 }{ \sqrt { 29 }  } $$
    This equation is of the form $$lx+my+nz=d$$, where $$l,m,n$$ are the direction cosines of normal to the plane and $$d$$ is the distance of normal from the origin.
    The coordinates of the foot of the perpendicular are given by $$(ld,md,nd)$$
    Therefore, the coordinates of the foot of the perpendicular are
    $$\left( \cfrac { 2 }{ \sqrt { 29 }  } \cdot\cfrac { 12 }{ \sqrt { 29 }  } ,\cfrac { 3 }{ \sqrt { 29 }  } .\cfrac { 12 }{ \sqrt { 29 }  } ,\cfrac { 4 }{ \sqrt { 29 }  } \cdot\cfrac { 12 }{ \sqrt { 29 }  }  \right) $$ i.e., $$\left( \cfrac { 24 }{ 29 } ,\cfrac { 36 }{ 29 } ,\cfrac { 48 }{ 29 }  \right) $$
  • Question 4
    1 / -0
    The equation of the plane containing the line $$\dfrac { x+1 }{ -3 } =\dfrac { y-3 }{ 2 } =\dfrac { z+2 }{ 1 } $$ and the point $$\left( 0,7,-7 \right) $$ is
    Solution
    The equation of plane containing the line
    $$\dfrac { x+1 }{ -3 } =\dfrac { y-3 }{ 2 } =\dfrac { z+2 }{ 1 } $$
    $$a\left( x+1 \right) +b\left( y-3 \right) +c\left( z+2 \right) =0$$        .....(i)
    where $$-3a+2b+c=0$$       ......(ii)
    This passes through $$\left( 0,7,-7 \right) $$.
    $$\therefore a+4b-5c=0$$                      .....(iii)
    From equations (ii) and (iii),
    $$\dfrac { a }{ -14 } =\dfrac { b }{ -14 } =\dfrac { c }{ -14 } $$
    or   $$\dfrac { a }{ 1 } =\dfrac { b }{ 1 } =\dfrac { c }{ 1 } $$
    Thus, the required plane is $$x + y + z = 0$$
  • Question 5
    1 / -0
    If the line $$\vec{OR}$$ makes angles $$\theta_1, \theta_2, \theta_3$$ with the planes $$XOY, YOZ, ZOX$$ respectively, then $$\cos^2\theta_1+\cos^2\theta_2+\cos^2\theta_3$$ is equal to
    Solution
    If the line $$\vec{OR}$$ makes angles $$\theta_1, \theta_2, \theta_3$$ with the planes $$XOY, YOZ, ZOX$$ respectively, then $$\cos^2\theta_1+\cos^2\theta_2+\cos^2\theta_3$$ $$=1$$
  • Question 6
    1 / -0
    The direction cosines of the line segment joining points $$(-3, 1, 2)$$ and $$(1, 4, -10)$$ is.
    Solution
    The direction ratios of the line segment joining $$A(-3, 1, 2)$$ and $$B(1, 4, -10)$$ are proportional to $$1-(-3), 4-1, -10-2,$$ i.e., $$4, 3, -12$$.
    Now, its direction cosines are $$\displaystyle\frac{4}{\sqrt{4^2+3^2+(-12)^2}}, \displaystyle\frac{3}{\sqrt{4^2+3^2+(-12)^2}}, \displaystyle\frac{-12}{\sqrt{4^2, 3^2+(-12)^2}}$$
    or $$\displaystyle\frac{4}{13}, \frac{3}{13}, -\frac{12}{13}$$
  • Question 7
    1 / -0
    If a line makes angles $$\alpha, \beta, \gamma$$ and $$\delta$$ with the diagonals of a cube, Then, $$\cos^2\alpha +\cos^2\beta +\cos^2\gamma +\cos^2\delta =\dfrac {a}{b}$$, where $$a$$ and $$b$$ are in lowest form, find $$a+b$$
    Solution
    A cube is a rectangular parallelopiped having equal length, breadth and height. Let OADBFEGC be the cube with each side of length a units.
    The four diagonals are OE, AF, BG and CD.
    The direction \cos ines of the diagonal OE which is the line joining two points O and E are
    $$\dfrac {a-0}{\sqrt {a^2+a^2+a^2}}, \dfrac {a-0}{\sqrt {a^2+a^2+a^2}}, \dfrac {a-0}{\sqrt {a^2+a^2+a^2}}$$
    i.e. $$\dfrac {1}{\sqrt 3}, \dfrac {1}{\sqrt 3}, \dfrac {1}{\sqrt 3}$$
    Similarly, the direction \cos ines of AF, BG and CD are $$(-\dfrac {1}{\sqrt 3}, \dfrac {1}{\sqrt 3}, \dfrac {1}{\sqrt 3}); (\dfrac {1}{\sqrt 3}-\dfrac {1}{\sqrt 3}, \dfrac {1}{\sqrt 3}); (\dfrac {1}{\sqrt 3},\dfrac {1}{\sqrt 3},-\dfrac {1}{\sqrt 3})$$, respectively.
    Let l, m, n be the direction \cos ines of the given line which makes angles $$\alpha, \beta, \gamma, \delta$$ with OE, AF, BG, CD, respectively. Then
    $$\cos \alpha =\dfrac {1}{\sqrt 3}(l+m+n); \cos  \beta =\dfrac {1}{\sqrt 3}(-l+m+n)$$;
    $$\cos \gamma =\dfrac {1}{\sqrt 3}(l-m+n); \cos \delta =\dfrac {1}{\sqrt 3}(l+m+n)$$;
    Squaring and adding, we get
    $$cso^2\alpha +\cos ^2\beta +\cos ^2\gamma +\cos ^2\delta \\=\dfrac {1}{3}[(1+m+n)^2+(-1+m+n)^2+(l-m+n)^2+(l+m+n)^2]\\=\dfrac {1}{3}[4(l^2+m^2+n^2)]=\dfrac {4}{3}$$ 
    (as $$l^2+m^2+n^2=1)$$
  • Question 8
    1 / -0
    If $$\alpha, \beta$$ and $$\gamma$$ are the angles which a half ray makes with the positive direction of the axes, then $$\sin^2\alpha+\sin^2\beta+\sin^2\gamma$$ is equal to  
    Solution
    Given expression, $$\sin^2\alpha+\sin^2\beta+\sin^2\gamma$$
    $$=(1-\cos^2\alpha)+(1-\cos^2\beta)+(1-\cos^2\gamma)$$
    $$=3-\cos^2\alpha+\cos^2\beta+\cos^2\gamma=3-1=2$$
    $$(\because \cos^2\alpha+\cos^2\beta+\cos^2\gamma=1)$$
  • Question 9
    1 / -0
    If the three points $$A(1,6), B(3,-4)$$ and $$C(x,y)$$ are collinear, then the equation satisfying by $$x$$ and $$y$$ is
    Solution
    Since, the points $$A(1,6), B(3,-4)$$ and $$C(x,y)$$ are colinear
    $$\therefore$$ $$\begin{vmatrix} 1 & 6 & 1 \\ 3 & -4 & 1 \\ x & y & 1 \end{vmatrix}=0$$
    $$\Rightarrow $$ $$1(-4-y)-6(3-x)+1(3y+4x)=0$$
    $$\Rightarrow $$ $$10x+2y-22=0$$
    $$\Rightarrow $$ $$5x+y-11=0$$
  • Question 10
    1 / -0
    The points $$(k -1, \ k +2), (k, \ k +1), (k +1, \ k)$$ are collinear for 
    Solution
    For given points to be collinear 
    $$\begin{vmatrix}k-1&k+2&1\\k&k+1&1\\k+1&k&1 \end{vmatrix}=0$$
    $$\Rightarrow \begin{vmatrix}-1&1&0\\-1&1&0\\k+1&k&1\end{vmatrix}=0$$, $$R_1\rightarrow R_1-R_2$$ and $$R_2\rightarrow R_2-R_3$$
    $$\Rightarrow 0=0$$, Since  1st and 2nd row are same.
    Hence given points are collinear for all real values of $$k$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now