Self Studies

Three Dimensional Geometry Test - 40

Result Self Studies

Three Dimensional Geometry Test - 40
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The angle between the straight lines $$x - 1 = \dfrac{2y + 3}{3} = \dfrac{z + 5}{2}$$ and $$x = 3r + 2;\, y = -2r - 1; \,z = 2$$, where $$r$$ is a parameter, is
    Solution
    Given equation of lines are,
    $$x - 1 = \dfrac{2y + 3}{3} = \dfrac{z + 5}{2}$$
    and $$x = 3r +2; y = - 2r - 1; z = 2$$
    $$\Rightarrow \dfrac{x - 1}{1} = \dfrac{y + \dfrac{3}{2}}{\dfrac{3}{2}} = \dfrac{z + 5}{2}$$
    and $$\dfrac{x - 2}{3} = r: \dfrac{y + 1}{-2} = r : \dfrac{z - 2}{0} = r$$
    $$\Rightarrow \dfrac{x - 1}{1} = \dfrac{y + \dfrac{3}{2}}{\dfrac{3}{2}} = \dfrac{z + 5}{2}$$
    and $$\dfrac{x - 2}{3} = \dfrac{y + 1}{-2} = \dfrac{z - 2}{0}$$
    DR's of lines Ist and IInd lines are $$\left( 1 , \dfrac{3}{2} , 2 \right )$$ and $$(3, -2, 0)$$.
    The angle between two straight lines is
    $$\cos \theta = \dfrac{a_1 a_2 + b_1 b_2 + c_1 c_2}{\sqrt{a_1^2 + b_1^2 + c_1^2} \sqrt{a_2^2 + b_2^2 + c_2^2}}$$
    $$= \dfrac{1 \times 3 - \dfrac{3}{2} \times 2 + 2 \times 0}{\sqrt{ 1^2 + \left( \dfrac{3}{2} \right )^2 + 2^2} \sqrt{3^2 + 2^2 + 0^2}}$$
    $$= \dfrac{3 - 3 + 0}{\sqrt{1 + \dfrac{9}{4} + 4} \sqrt{9 + 4}}$$
    $$= \dfrac{0}{\sqrt{\dfrac{29}{4}} \sqrt{13}}$$
    $$\Rightarrow \cos \theta = 0$$
    $$\Rightarrow \theta = \dfrac{\pi}{2}$$
  • Question 2
    1 / -0
    If the two lines $$\cfrac { x-1 }{ 2 } =\cfrac { 1-y }{ -a } =\cfrac { z }{ 4 } $$ and $$\cfrac { x-3 }{ 1 } =\cfrac { 2y-3 }{ 4 } =\cfrac { z-2 }{ 2 } $$ are perpendicular, then the value of $$a$$ is equal to
    Solution
    Given equation of lines

    $$\cfrac { x-1 }{ 2 } =\cfrac { 1-y }{ -a } =\cfrac { z }{ 4 } \quad $$
    $$\Rightarrow \cfrac { x-1 }{ 2 } =\cfrac { y-1 }{ a } =\cfrac { z-0 }{ 4 } ...(i)$$
    and $$\cfrac { x-3 }{ 1 } =\cfrac { y-\cfrac { 3 }{ 2 }  }{ 2 } =\cfrac { z-2 }{ 2 } ...(ii)$$

    Here $$\quad { a }_{ 1 }=2,{ b }_{ 1 }=a,{ c }_{ 1 }=4;{ a }_{ 2 }=1,{ b }_{ 2 }=2,{ c }_{ 2 }=2$$

    Since lines (i) and (ii) are perpendicular
    $$\therefore { a }_{ 1 }{ a }_{ 2 }+{ b }_{ 1 }{ b }_{ 2 }+{ c }_{ 1 }{ c }_{ 2 }=0$$

    $$\Rightarrow 2\times 1\times +a\times 2+4\times 2=0$$

    $$\Rightarrow 2a=-10\Rightarrow a=-5$$
  • Question 3
    1 / -0
    The number of straight lines that are equally inclined to the three-dimensional coordinate axes, is
    Solution
    Since, $$\alpha = \beta = \gamma \Rightarrow \cos^{2}\alpha + \cos^{2}\alpha + \cos^{2}\alpha = 1$$
    $$\Rightarrow \alpha + \cos^{-1}\left (\pm \dfrac {1}{\sqrt {3}}\right )$$
    So, there are four line whose $$DC's$$ are
    $$\left (\dfrac {1}{\sqrt {3}}, \dfrac {1}{\sqrt {3}}, \dfrac {1}{\sqrt {3}}\right ), \left (\dfrac {-1}{\sqrt {3}}, \dfrac {1}{\sqrt {3}}, \dfrac {1}{\sqrt {3}}\right ), \left (\dfrac {1}{\sqrt {3}}, \dfrac {-1}{\sqrt {3}}, \dfrac {1}{\sqrt {3}}\right ) \left (\dfrac {1}{\sqrt {3}}, \dfrac {1}{\sqrt {3}}, \dfrac {-1}{\sqrt {3}}\right )$$.
  • Question 4
    1 / -0
    If the direction ratios of two lines are given by $$3lm-4ln+mn=0$$ and $$l+2m+2n=0$$, then, the angle between the lines is
    Solution
    By solving two equations we get
    $$\left( { l }_{ 1 },{ m }_{ 1 },{ n }_{ 1 } \right) =\left( 2\sqrt { 2 } -3,-\sqrt { 2 } ,1 \right) $$
    $$\left( { l }_{ 2 },{ m }_{ 2 },{ n }_{ 2 } \right) =\left( -2\sqrt { 2 } -2,\sqrt { 2 } ,1 \right) $$
    $$ { l }_{ 1 }{ l }_{ 2 }+{ m }_{ 1 }{ m }_{ 2 }+{ n }_{ 1 }{ n }_{ 2 }=0$$
    Therefore, the angle between them is $$\cfrac { \pi  }{ 2 } $$.
  • Question 5
    1 / -0
    The equation of the plane perpendicular to the line $$\cfrac { x-1 }{ 1 } =\cfrac { y-2 }{ -1 } =\cfrac { z+1 }{ 2 } $$ and passing through the point $$(2,3,1)$$ is
    Solution
    The given line is parallel to the vector $$n=\hat { i } -\hat { j } +2\hat { k } $$. The required plane passes through the point $$(2,3,1)$$ ie., $$2\hat { i } +3\hat { j } +\hat { k } $$
    so, its equation is,
    $$r-\left( 2\hat { i } -3\hat { j } +\hat { k }  \right) \left( \hat { i } -\hat { j } +2\hat { k }  \right) =0\quad $$
    $$\Rightarrow r.\left( \hat { i } -\hat { j } +2\hat { k }  \right) =1$$
  • Question 6
    1 / -0
    The angle between two diagonals of a cube will be
    Solution
    Let the cube be of side $$a$$. Then, $$O\left( 0,0,0 \right) , D\left( a,a,a \right) , B\left( 0,a,0 \right) $$ and $$G\left( a,0,a \right) $$
    Now, equations of diagonals $$OD$$ and $$BG$$ are
    $$\dfrac { x }{ a } =\dfrac { y }{ a } =\dfrac { z }{ a } $$ and $$\dfrac { x }{ a } =\dfrac { y-a }{ -a } =\dfrac { z }{ a } $$, respectively.
    Hence, angle between $$OD$$ and $$BG$$ is
    $$\cos ^{ -1 }{ \left( \dfrac { { a }^{ 2 }-{ a }^{ 2 }+{ a }^{ 2 } }{ \sqrt { 3{ a }^{ 2 } } \cdot \sqrt { 3{ a }^{ 2 } }  }  \right)  } =\cos ^{ -1 }{ \left( \dfrac { 1 }{ 3 }  \right)  } $$

  • Question 7
    1 / -0
    If a line makes the angle $$\alpha ,\beta ,\gamma $$ with three dimensional coordinate axes respectively, then $$\cos { 2\alpha  } +\cos { 2\beta  } +\cos { 2\gamma  } $$ is equal to
    Solution
    We need to find value of $$\cos { 2\alpha  } +\cos { 2\beta  } +\cos { 2\gamma  } $$
    It is further equal to $$\cos ^{ 2 }{ \alpha  } -1+\cos ^{ 2 }{ \beta  } -1+\cos ^{ 2 }{ \gamma  } -1$$
    $$=2\left( \cos ^{ 2 }{ \alpha  } +\cos ^{ 2 }{ \beta  } +\cos ^{ 2 }{ \gamma  }  \right) -3$$
    $$=2(1)-3=2=-1\left( \because { l }^{ 2 }+{ m }^{ 2 }+{ n }^{ 2 }=1 \right) $$
  • Question 8
    1 / -0
    The point $$P(x, y, z)$$ lies in the first octant and its distance from the origin is $$12$$ units. If the position vector of $$P$$ make $$45^{\circ}$$ and $$60^{\circ}$$ with the x-axis and y-axis respectively, then the coordinates of $$P$$ are
    Solution
    Given, $$OP = 12$$ units
    and $$\alpha = 45^{\circ}$$ and $$\beta = 60^{\circ}$$
    Let direction cosines of line $$OP$$ is $$< l, m, n >$$
    $$\therefore l^{2} + m^{2} + n^{2} = 1$$
    $$\Rightarrow \cos^{2}\alpha + \cos^{2}\beta + \cos^{2}\gamma = 1$$
    $$\Rightarrow \cos^{2} 45^{\circ} + \cos^{2} 60^{\circ} + \cos^{2}\gamma = 1$$
    $$\Rightarrow \left (\dfrac {1}{\sqrt {2}}\right )^{2} + \left (\dfrac {1}{2}\right )^{2} = 1 - \cos^{2}\gamma$$
    $$\Rightarrow \sin^{2}\gamma = \dfrac {1}{2} + \dfrac {1}{4} = \dfrac {3}{4}$$
    $$\Rightarrow \sin \gamma = \dfrac {\sqrt {3}}{2} = \sin 60^{\circ}$$
    Thus $$ \gamma = 60^{\circ}$$
    So, the coordinates of $$P\equiv (l\cdot OP, m\cdot OP, n\cdot OP)$$
    $$\equiv (OP\cos \alpha, OP\cos \beta, OP\cos \gamma)$$
    $$\equiv \left (12\cdot \dfrac {1}{\sqrt {2}}, 12\cdot \dfrac {1}{2}, 12\cdot \dfrac {1}{2}\right )$$
    $$\equiv (6\sqrt {2}, 6, 6)$$

  • Question 9
    1 / -0
    If the direction cosines of a line are $$\left (\dfrac {1}{c}, \dfrac {1}{c}, \dfrac {1}{c}\right )$$, then
    Solution
    Since, $$DC's$$ of a line are $$\left (\dfrac {1}{c}, \dfrac {1}{c}, \dfrac {1}{c}\right )$$
    $$\because l^{2} + m^{2} + n^{2} = 1$$
    $$\therefore \left (\dfrac {1}{c}\right )^{2} + \left (\dfrac {1}{c}\right )^{2} + \left (\dfrac {1}{c}\right )^{2} = 1$$
    $$\Rightarrow 1 + 1 + 1 = c^{2} \Rightarrow c^{2} = 3$$
    $$\Rightarrow c = \pm \sqrt {3}$$.
  • Question 10
    1 / -0
    A line makes the same angle $$\theta $$ with each of the $$x$$ and $$z$$-axes. If the angle $$\beta$$, which it makes with $$y$$-axis, is such that $$\sin ^{ 2 }{ \beta  } =3\sin ^{ 2 }{ \theta  } $$, then $$\cos ^{ 2 }{ \theta  } $$ is equal to
    Solution
    A line makes angle $$\theta $$ with $$x$$-axis and $$z$$-axis and $$\beta$$ with $$y$$-axis.
    $$ l=\cos { \theta  } , m=\cos { \beta  } , n=\cos { \theta  } $$      ....$$\text{Since}\ { l }^{ 2 }+{ m }^{ 2 }+{ n }^{ 2 }=1$$
    $$\Rightarrow \cos ^{ 2 }{ \theta  } +\cos ^{ 2 }{ \beta  } +\cos ^{ 2 }{ \theta  } =1$$
    $$\Rightarrow 2\cos ^{ 2 }{ \theta  } =1-\cos ^{ 2 }{ \beta  } =\sin ^{ 2 }{ \beta  } $$
    $$\Rightarrow 2\cos ^{ 2 }{ \theta  } =3\sin ^{ 2 }{ \theta  } $$     .....(given, $$\sin ^{ 2 }{ \beta  } =3\sin ^{ 2 }{ \theta  }$$)
    $$\Rightarrow 2\cos ^{ 2 }{ \theta  } =3\left( 1-\cos ^{ 2 }{ \theta  }  \right)$$
    $$\Rightarrow 5\cos ^{ 2 }{ \theta  } =3$$
    $$\Rightarrow \cos ^{ 2 }{ \theta  } =\dfrac { 3 }{ 5 } $$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now