Self Studies

Three Dimensional Geometry Test - 41

Result Self Studies

Three Dimensional Geometry Test - 41
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$\alpha ,\beta ,\gamma $$ are the angles which a directed line makes with the positive directions of the coordinate axes, then $$\sin ^{ 2 }{ \alpha  } +\sin ^{ 2 }{ \beta  } +\sin ^{ 2 }{ \gamma  } $$ is equal to
    Solution
    The direction cosines of the line are
    $${ l }^{ 2 }+{ m }^{ 2 }+{ n }^{ 2 }=1$$
    Now, $$\Rightarrow \cos ^{ 2 }{ \alpha  } +\cos ^{ 2 }{ \beta  } +\cos ^{ 2 }{ \gamma  } =1$$
    $$\Rightarrow 1-\sin ^{ 2 }{ \alpha  } +1-\sin ^{ 2 }{ \beta  } +1-\sin ^{ 2 }{ \gamma  } =1$$
    $$\Rightarrow \sin ^{ 2 }{ \alpha  } +\sin ^{ 2 }{ \beta  } +\sin ^{ 2 }{ \gamma  } =2$$
  • Question 2
    1 / -0
    The acute angle between the lines whose direction ratios are given by $$l+m-n=0$$ and $${ l }^{ 2 }+{ m }^{ 2 }-{ n }^{ 2 }=0$$, is
    Solution
    We have
    $$l+m-n=0$$
    and $${ l }^{ 2 }+{ m }^{ 2 }+{ n }^{ 2 }=0$$
    $$\Rightarrow { l }^{ 2 }+{ m }^{ 2 }={ n }^{ 2 }$$ and $$l+m=n$$
    $$\Rightarrow { l }^{ 2 }+{ m }^{ 2 }={ (l+m) }^{ 2 }$$
    $$\Rightarrow 2lm=0$$
    $$\Rightarrow l=0,m=0$$
    If $$l=0$$, then $$m=n$$
    $$\therefore \cfrac { l }{ 0 } =\cfrac { m }{ 1 } =\cfrac { n }{ 1 } $$
    If $$m=0$$, then
    $$l=n$$
    $$\therefore \cfrac { l }{ 1 } =\cfrac { m }{ 0 } =\cfrac { n }{ 1 } $$
    thus, the dr's of the lines are proportional to $$0,1,1$$ and $$1,0,1$$
    Therefore, angle $$\theta$$ between them is given by
    $$\cos { \theta  } =\cfrac { 0\times 1+1\times 0+\left| 1\times 1 \right|  }{ \sqrt { 0+1+1 } \sqrt { 1+0+1 }  } =\cfrac { 1 }{ 2 } $$
    $$\Rightarrow \theta =\cfrac { \pi  }{ 3 } \quad $$
  • Question 3
    1 / -0
    ABCD is a trapezium in which AB and CD are parallel sides. If $$l(AB) =  3 l (CD) $$ and $$\bar {DC} = 2 \hat {i} - 5 \hat {k}$$. Then vector  $$ \bar {AB} $$ is
    Solution
    Given  
    $$\vec{DC}=2\hat{i}-5\hat{k}$$
    $$\vec{CD}=-2\hat{i}+5\hat{k}$$
    AB is parallel to CD
    $$\vec{AB}=\lambda\vec{CD}$$
    $$\vec{AB}=\lambda(-2\hat{i}+5\hat{k})$$
    $$\vec{AB}=-2\lambda\hat{i}+5\lambda\hat{k}$$

    $$l (AB)=3 l (CD)$$

    $$\sqrt{(-2\lambda)^2+(5\lambda)^2}=3\sqrt{(-2)^2+(5)^2}$$

    $$\sqrt{4\lambda^2+25\lambda^2}=3\sqrt{4+25}$$

    $$\sqrt{29\lambda^2}=3\sqrt{29}$$

    $$\sqrt{29}\lambda=3\sqrt{29}$$

    on comparing both  sides 
    $$\lambda=3$$
    putting value of $$\lambda$$ in AB
    $$\vec{AB}=-2\times3\hat{i}+5\times3\hat{k}$$
    $$\vec{AB}=-6\hat{i}+15\hat{k}$$
    Hence option C is correct
  • Question 4
    1 / -0
    If a line makes $${ 45 }^{ o },{ 60 }^{ o }$$ with positive direction of axes $$x$$ and $$y$$ then the angle it makes with the z-axis is:
    Solution
    If $$\alpha, \beta, \gamma $$ are the angles made by a line with the positive direction of $$x$$-axis,$$y$$-axis and $$z$$-axis then $$cos\:\alpha, cos\:\beta, cos\:\gamma$$ are called the direction cosines of the line.

    Also $$cos^2 \alpha+cos^2\beta+cos^2\gamma=1$$

    Given $$\alpha=45^\circ, \beta=60^\circ$$

    $$\Rightarrow cos^2 45^\circ+cos^2 60^\circ+cos^2\gamma=1$$

    $$\Rightarrow \left(\dfrac{1}{\sqrt{2}}\right)^2+\left(\dfrac{1}{2}\right)^2+cos^2 \gamma=1$$

    $$\Rightarrow \dfrac{1}{2}+\dfrac{1}{4}+cos^2 \gamma=1$$

    $$\Rightarrow cos^2 \gamma=1-\dfrac{1}{2}-\dfrac{1}{4}$$

    $$\Rightarrow cos^2 \gamma=1-\dfrac{3}{4}$$

    $$\Rightarrow cos^2 \gamma=\dfrac{1}{4}$$

    $$\Rightarrow cos \gamma=\dfrac{1}{2}$$

    $$\Rightarrow  \gamma=cos^{-1}\left(\dfrac{1}{2}\right)$$

    $$\Rightarrow \gamma=60^\circ$$


  • Question 5
    1 / -0
    The dc's $$(l,m,n)$$ of two lines are connected between the relation $$l + m + n = 0, \ lm = 0$$, then the angle between the lines is 
    Solution

    We know that,

    $$\cos \theta =\dfrac{\overrightarrow{{{b}_{1}}.}\overrightarrow{{{b}_{2}}}}{\overrightarrow{\left| {{b}_{1}} \right|}\left| {{\overrightarrow{b}}_{2}} \right|}$$    ...... (1)

     

    Given that,

    $$ l+m+n=0 $$

    $$  l+m=-n $$

    $$  -\left( l+m \right)=n $$

     

    And, $$lm=0$$

    So,

    Either $$l=0$$ or $$m=0$$

    When, $$l=0$$, then 

    $$m= -n$$

    And, 

    $$(l, m, n)= (0, 1, -1)$$

     

    When, $$m=0$$, then 

    $$l= -n$$

    And, 

    $$(I, m, n)= (1, 0, -1)$$

     

    Calculate $$b_1\cdot b_2$$.

    $$ {{b}_{1}}.{{b}_{2}}=(0,1,-1).(1,0,-1) $$

              $$ =0+0+1 $$

              $$ =1 $$


    Therefore,

    $$ \left| {{b}_{1}} \right|=\sqrt{{{0}^{2}}+{{1}^{2}}+{{(-1)}^{2}}}=\sqrt{2} $$

    $$ \left| {{b}_{2}} \right|=\sqrt{{{0}^{2}}+{{1}^{2}}+{{(-1)}^{2}}}=\sqrt{2} $$

     

    Now, substitute the values in equation (1).

    $$ \cos \theta =\dfrac{\overrightarrow{{{b}_{1}}}.\overrightarrow{{{b}_{2}}}}{\left| {{\overrightarrow{b}}_{1}} \right|\left| \overrightarrow{{{b}_{2}}} \right|} $$

    $$ \Rightarrow \cos \theta =\dfrac{1}{\sqrt{2}.\sqrt{2}}=\dfrac{1}{2} $$

    $$ \Rightarrow \theta =\dfrac{\pi }{3} $$


    Hence, the angle between the lines is $$\dfrac{\pi}{3}$$.

  • Question 6
    1 / -0
    $$A = \begin{bmatrix} l_{1}& m_{1} & n_{1}\\ l_{2} & m_{2} & n_{2}\\ l_{3} & m_{3} & n_{3}\end{bmatrix}$$ and $$B = \begin{bmatrix}p_{1} & q_{1} & r_{1}\\ p_{2} & q_{2} & r_{2}\\ p_{3} & q_{3} & r_{3}\end{bmatrix}$$ where $$p_{1}, q_{1}, r_{1}$$ are the co-factors of the elements $$l_{i},m_{i},n_{i}$$ for $$i = 1, 2, 3$$. If $$(l_{1}, m_{1}, n_{1}), (l_{2}, m_{2}, n_{2})$$ and $$(l_{3},m_{3}, n_{3})$$ are the direction cosines of three mutually perpendicular lines then $$(p_{1}, q_{1}, r_{1}), (p_{2}, q_{2}, r_{2})$$ and $$(p_{3}, q_{3}, r_{3})$$ are
    Solution
    Given $$p_1,q_1,r_1$$  are the co-factors of the elements $$l_i,m_i,n_i $$
    For $$i=1,2,3$$
    $$(l_2,m_2,n_2)$$  and $$(l_3,m_3,n_3)$$ are the direction cosines of three mutually perpendicular lines
    Thus $$(p_1,q_1,r_1),(p_2,q_2,r_2) ,(p_3,q_3,r_3)$$ are also the direction cosines of three mutually perpendicular lines
    Option A is Correct answer 
  • Question 7
    1 / -0
    If a lines makes angles $$ \alpha , \beta , \gamma , \delta $$ with four digonals of a cube. Then $$ \cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma + \cos ^2 \delta $$ will be :
    Solution
    $$DC's$$ of the four diagonals of a cube on putting $$ a=b=c $$ are 
    $$ \left( \dfrac {1}{\sqrt3} , \dfrac {1}{\sqrt3} , \dfrac {1}{\sqrt3} \right) \left( \dfrac {-1}{\sqrt3} , \dfrac {1}{\sqrt3} , \dfrac {1}{\sqrt3} \right) \left( \dfrac {1}{\sqrt3} , \dfrac {-1}{\sqrt3} , \dfrac {1}{\sqrt3} \right) \left( \dfrac {1}{\sqrt3} , \dfrac {1}{\sqrt3} , \dfrac {-1}{\sqrt3} \right) $$
    Let $$l,m,n$$ be the dc's of the line which is inclined at angles $$ \alpha , \beta , \gamma , \delta $$ resp to the four diagonals then 
    $$ \cos \alpha = \dfrac {1}{\sqrt3} \cdot l + m \cdot  \dfrac{1}{\sqrt3} + n \cdot \dfrac{1}{\sqrt3} = \dfrac {l+m+n}{\sqrt3} $$
    Similarly $$ \cos \beta = \dfrac {-l+m-n}{\sqrt3} , \cos \gamma = \dfrac  {l-m+n}{\sqrt3} , \cos \delta = \dfrac {l+m-n}{\sqrt3} $$
    $$ \therefore \cos^2 \alpha , \cos^2 \beta + \cos^2 \gamma + \cos^2 \delta $$
    $$ = \dfrac {4 ( l^2 + m^2 + n^2)}{3} = \dfrac {4}{3} ( \because l^2 + m^2 + n^2 = 1) $$
  • Question 8
    1 / -0
    ABC is a triangle where $$A(2,3,5), B(-1,3,2)$$ and $$C(\lambda , 5, \mu)$$. Let the median through $$A$$ is equally inclined to the axes.
    The value of $$\mu - \lambda$$ is equal to:
    Solution
    Now, the mid point of the side $$BC$$ be $$D\left(\dfrac{\lambda-1}{2},4,\dfrac{\mu+2}{2}\right)$$.

    Let $$\alpha$$, $$\beta$$ and $$\gamma$$ be the  angles made by the median $$AD$$ of $$\Delta$$ABC.

    Then direction cosines of the side $$AD$$ are

    $$\cos \alpha=\dfrac{\dfrac{\lambda-1}{2}-2}{\vec{AD}}$$, $$\cos \beta=\dfrac{4-3}{\vec{AD}}$$, $$\cos \gamma=\dfrac{\dfrac{\mu+2}{2}-5}{\vec{AD}}$$.

    Since $$\alpha=\beta=\gamma$$

    $$\Rightarrow \cos \alpha=\cos \beta=\cos \gamma$$......$$\because$$ (equally inclined to the axes)

    $$\Rightarrow \dfrac{\lambda-5}{2}=1=\dfrac{\mu-8}{2}$$

    $$\Rightarrow \lambda=7$$ and $$\mu=10$$.

    $$\therefore \mu-\lambda=3$$
  • Question 9
    1 / -0
    The point of intersection of the line joining the points $$(-3, 4, -8)$$ and $$(5, -6, 4)$$ with the $$XY$$-plane is
    Solution

    $$\overrightarrow { r } =\overrightarrow { a } +x(\overrightarrow { b } -\overrightarrow { a } )\\ \overrightarrow { a } =-3\hat { i } +4\hat { j } +(-8)\hat { k } \\ \overrightarrow { b } =5\hat { i } +(-6)\hat { j } +4\hat { k } \\ \overrightarrow { r } =-3\hat { i } +4\hat { j } +(-8)\hat { k } +x(8\hat { i } +(-10)\hat { j } +12\hat { k } )=(8x-3)\hat { i } +(4-10x)\hat { j } +(12x-8)\hat { k }$$

    On $$XY$$ plane $$\hat { k }$$ will be $$0$$ 

    So $$12x-8=0$$ it means $$x=\dfrac { 2 }{ 3 } $$

    Putting the value of $$x$$ in component of $$\hat { i }$$ and $$\hat { j }$$ we get 

    $$8\times \dfrac { 2 }{ 3 } -3$$ and $$4-10\times \dfrac { 2 }{ 3 }$$

    $$ \dfrac { 7 }{ 3 } \ and\ \dfrac { -8 }{ 3 } $$

    So correct optiopn will be option A.

  • Question 10
    1 / -0
    Find the direction cosines of the line which is perpendicular to the lines with direction cosines proportional to 1, -2, -2 and 0, 2, 1.
    Solution
    Let $$l,m,n$$ be the direction cosines of the required line. Since it is perpendicular to the lines whose direction cosines are proportional to $$1, -2, -2$$ and $$0, 2, 1$$ respectively.

    Thus,

    $$l-2m-2n=0$$

    $$0l+2m+n=0$$

    On solving these equations, we get,

    $$\dfrac{l}{2}=\dfrac{m}{-1}=\dfrac{n}{2}$$

    Thus, the direction ratios of the required line are proportional to $$2,-1,2$$. Hence, its direction cosines are :

    $$\dfrac{2}{\sqrt{2^2+(-1)^2+2^2}}, \dfrac{-1}{\sqrt{2^2+(-1)^2+2^2}}, \dfrac{2}{\sqrt{2^2+(-1)^2+2^2}}=\dfrac{2}{3}, -\dfrac{1}{3}, \dfrac{2}{3}$$.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now