The lines should be $$x + y + z = 0 $$
and, $$4x + y - 2z = (-2)$$
Now, equation should lie on both planes.
So, the equation of line should be perpendicular to both planes.
Let the DRs of the line $$(a, b, c)$$
So, $$(a, b, c) \perp (1,1, 1)$$
and, $$(a, b, c) \perp (4, ,1, -2)$$
$$\therefore a + b + c = 0$$
$$4a + b - 2c = 0$$
On solving,
$$\dfrac{a}{-2-1} = \dfrac{-b}{-2-4} = \dfrac{c}{1-4}$$
$$ \Rightarrow a = -3, b = 6, c = -3$$
$$ \Rightarrow a = -1, b = 2, c = -1$$
Let the coordinates of the point lying in $$xy$$ plane $$(x, y, 0)$$
on subtracting $$x + y = -1 -(1)$$
and $$4x + y = -2$$
$$\Rightarrow -3x = 1$$
$$\Rightarrow x = \dfrac{-1}{3}$$
Putting vbalue of $$x$$ in $$(1)$$
$$\dfrac{-1}{3} + y = -1$$
$$y = -1 + \dfrac{-1}{3}$$
$$=\dfrac{-2}{3}$$
Coordinate $$(\dfrac{-1}{3} , \dfrac{-2}{3}, 0)$$
$$\therefore Equation = \dfrac{x + \dfrac{1}{3}}{-1} = \dfrac{y + \dfrac{2}{3}}{2} =\dfrac{z - 0}{-1}$$
DC = $$\dfrac{-1}{\sqrt{(-1)^2 + (2)^2 +(1)^2}} ,\dfrac{2}{\sqrt{(-1)^2 + (2)^2 +(1)^2}} , \dfrac{-1}{\sqrt{(-1)^2 + (2)^2 +(1)^2}}$$
$$= (\dfrac{-1}{\sqrt{6}}, \dfrac{2}{\sqrt{6}}, \dfrac{-1}{\sqrt{6}})$$