Self Studies

Three Dimensional Geometry Test - 42

Result Self Studies

Three Dimensional Geometry Test - 42
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The equation of the plane passing through the point $$(1, 1, 1)$$ and perpendicular to the planes $$2x+y-2z=5$$ and $$3x-6y-2z=7$$ is?
    Solution
    NOTE:Equation if the second plane should be $$3x-6y-2z=7$$
    Hence option (D) is the correct anwer.

  • Question 2
    1 / -0
    The acute angle between two lines such that the direction cosines $$l,\  m,\ n$$ of each of them satisfy the equation $$l+m+n=0$$ and $$l^2+m^2-n^2=0$$ is 
    Solution
    Lines are $$l+m+n=0\implies -l=(m+n)$$and $$l^2-m^2+n^2=0\implies l^2=m^2-n^2$$Solving them gives,$$(-(m+n))^2=m^2+n^2+2mn=m^2-n^2\implies 2n(n+m)=0$$Now, for $$n=0$$$$m=-l$$, so d.c's $$\left(\dfrac 1{\sqrt 2}, -\dfrac 1{\sqrt 2}, 0\right)$$And for $$n=-m$$$$l=0$$, so d.c's $$\left(0, \dfrac 1{\sqrt 2}, -\dfrac 1{\sqrt 2}\right)$$Angles between the lines $$|\cos \theta|=\left|\dfrac 12\right|\implies \theta =\dfrac \pi 3$$
  • Question 3
    1 / -0
    The direction cosines of the ray $$P(1,-2,4)$$ and $$Q(-1,1,-2)$$ are
    Solution
    $$P(1, -2, 4)\  Q(-1, 1, -2)$$
    $$PQ = \sqrt{(1-(-1))^2 + (-2 -1)^2 + (4 - (-2))^2}$$
            $$= \sqrt{4 + 9 + 36}$$
            $$= \sqrt{49}$$
            $$= 7$$
    $$DC = (\dfrac{-1 - 1}{7}, \dfrac{1 - (-2)}{7}, \dfrac{-2 - 4}{7})$$
            $$ = (\dfrac{-2}{7}, \dfrac{3}{7}, \dfrac{-6}{7})$$
  • Question 4
    1 / -0
    The measure of the angle between the lines, whose direction numbers are $$l,m,n$$ and $$m-n,n-l,l-m$$ is ______
    Solution
    Here, $$(l,m,n).(m-n,n-l,l-m)$$
    $$=l(m-n)+m(n-l)+m(l-m)$$
    $$=lm-nl+mn-ml+nl-nm$$
    $$=0$$
    So, Lines are mutuall perpendicular
    So, Angle between them is $$\cfrac { \pi  }{ 2 } $$
  • Question 5
    1 / -0
    The acute angle between two lines such that the direction cosines l,m,n of each of them satisfy the equations $$l+m+n=0$$ and $${ l }^{ 2 }+{ m }^{ 2 }-{ n }^{ 2 }=0$$ is :-

    Solution
    Lines are $$l+m+n=0\Rightarrow -l=(m+n)$$
    and $${ l }^{ 2 }-{ m }^{ 2 }+{ n }^{ 2 }=0\Rightarrow { l }^{ 2 }={ m }^{ 2 }-{ n }^{ 2 }$$
    Solving them gives, $${ \left( -\left( { m }{ +n } \right)  \right)  }^{ 2 }={ m }^{ 2 }+{ n }^{ 2 }+2mn={ m }^{ 2 }-{ n }^{ 2 }\Rightarrow 2n(n+m)=0$$
    Now, for $$n=0$$
    $$m=-l$$, so d.c's $$\left( \cfrac { 1 }{ \sqrt { 2 }  } ,-\cfrac { 1 }{ \sqrt { 2 }  } ,0 \right) $$
    And for $$n=-m$$
    $$l=0$$ so d.c's $$\left( 0,\cfrac { 1 }{ \sqrt { 2 }  } ,-\cfrac { 1 }{ \sqrt { 2 }  }  \right) $$
    Angle between the lines $$\left| \cos { \theta  }  \right| =\left| \cfrac { 1 }{ 2 }  \right| \Rightarrow \theta =\cfrac { \pi  }{ 3 } =60$$

  • Question 6
    1 / -0
    Find in a symmetrical form, the equations of the line formed by the planes $$x+y+z+1=0, 4x+y-2z+2=0$$ and find its direction-cosines.
    Solution
    The lines should be $$x + y + z = 0 $$

    and, $$4x + y - 2z = (-2)$$

    Now, equation should lie on both planes.

    So, the equation of line should be perpendicular to both planes.

    Let the DRs of the line $$(a, b, c)$$

    So, $$(a, b, c) \perp (1,1, 1)$$

    and, $$(a, b, c) \perp (4, ,1, -2)$$

    $$\therefore a + b + c = 0$$

       $$4a + b - 2c = 0$$

    On solving,
                     $$\dfrac{a}{-2-1} = \dfrac{-b}{-2-4} = \dfrac{c}{1-4}$$

                     $$ \Rightarrow a = -3, b = 6, c = -3$$

                     $$ \Rightarrow a = -1, b = 2, c = -1$$

    Let the coordinates of the point lying in $$xy$$ plane $$(x, y, 0)$$

    on subtracting $$x + y = -1   -(1)$$

    and $$4x + y =  -2$$

    $$\Rightarrow -3x = 1$$

    $$\Rightarrow x = \dfrac{-1}{3}$$

    Putting vbalue of $$x$$ in $$(1)$$

    $$\dfrac{-1}{3} + y = -1$$

    $$y = -1 + \dfrac{-1}{3}$$

       $$=\dfrac{-2}{3}$$

    Coordinate $$(\dfrac{-1}{3} , \dfrac{-2}{3}, 0)$$

    $$\therefore Equation = \dfrac{x + \dfrac{1}{3}}{-1} = \dfrac{y + \dfrac{2}{3}}{2} =\dfrac{z - 0}{-1}$$

    DC = $$\dfrac{-1}{\sqrt{(-1)^2 + (2)^2 +(1)^2}} ,\dfrac{2}{\sqrt{(-1)^2 + (2)^2 +(1)^2}} , \dfrac{-1}{\sqrt{(-1)^2 + (2)^2 +(1)^2}}$$

        $$= (\dfrac{-1}{\sqrt{6}}, \dfrac{2}{\sqrt{6}}, \dfrac{-1}{\sqrt{6}})$$
  • Question 7
    1 / -0
    The equation of plane passing through $$(4, 5, -1)$$ having normal $$3\hat{i}-\hat{j}+\hat{k}$$ is ___________.
    Solution
    $$A(\bar{a})=(4, 5, -1)$$ and $$\bar{n}=(3, -1, 1)$$
    $$\therefore$$ Required equation of plane $$\bar{r}\cdot \bar{n}=\bar{a}\cdot \bar{n}$$
    $$\therefore (x, y, z)(3, -1, 1)=(4, 5, -1)\cdot (3, -1, 1)$$
    $$\therefore 3x-y+z=12-5-1$$
    $$\therefore 3x-y+z=6$$
  • Question 8
    1 / -0
    Vector equation of line $$\dfrac{3-x}{3}=\dfrac{2y-3}{5}=\dfrac{z}{2}$$ is __________ $$k\in R$$.
    Solution
    $$\dfrac{3-x}{3}=\dfrac{2y-3}{5}=\dfrac{z}{2}$$
    $$\therefore\dfrac{x-3}{-3}=\dfrac{y-\dfrac{3}{2}}{\dfrac{5}{2}}=\dfrac{z-0}{2}$$
    Here $$A(\bar{a})=\left(3, \dfrac{3}{2}, 0\right)$$ and $$(\bar{l})=\left(-3, \dfrac{5}{2}, 2\right)$$
    Vector equation of line : $$\bar{r}=\bar{a}+k(\bar{l})$$
    $$\therefore r=\left(3, \dfrac{3}{2}, 0\right)+k'\left(-3, \dfrac{5}{2}, 2\right)$$
    $$=\left(3, \dfrac{3}{2}, 0\right)+\dfrac{k'}{2}(-6, 5, 4)$$
    $$=\left(3, \dfrac{3}{2}, 0\right)+k(-6, 5, 4)$$
    $$\therefore k=\dfrac{k'}{2}\in R$$.
  • Question 9
    1 / -0
    The vector equation of the plane which is at distance of $$10$$ unit from the origin and perpendicular to the vector $$4i+4j-2k$$ is
    Solution
    Consider the problem 
    Let the Normal vector be $$N=4\hat i + 4\hat j - 2\hat k$$ 
    Then unit vector in the direction of $$\vec N$$ is 
    $$=\frac{\vec N}{|\vec N|}$$
    $$ = \frac{{4\hat i + 4\hat j - 2\hat k}}{{\sqrt {{4^2} + {4^2} + {{( - 2)}^2}} }}$$
    $$ = \frac{1}{6}\left( {4\hat i + 4\hat j - 2\hat k} \right)$$
    As we know that the equation of the plane with the position vector $$\vec r$$
    $$\vec r. \hat n=d$$
    this imlies,
    $$\vec r. \frac{1}{6}\left( {4\hat i + 4\hat j - 2\hat k} \right)=10$$
    Hence,
    the required equation 
    $$r.\left( {4i + 4j - 2k} \right) = 60$$

    Hence option $$D$$ is the correct answer.
  • Question 10
    1 / -0
    A line making angles $$45^o$$ and $$60^o$$ with the positive direction of $$x-$$ axis and $$y-$$ axis respectively. Then the angle made by the line with positive direction of $$z-$$ axis is 
    Solution
    $$cos^2\alpha + cos^2\beta + cos^2\gamma = 1$$
    $$\alpha = 45^{\circ}$$
    $$\beta = 60^{\circ}$$
    $$\therefore cos^245^{\circ} + cos^260^{\circ} + cos^2\gamma = 1 $$
    $$\dfrac{1}{2} + \dfrac{1}{4} + cos^2\gamma = 1 $$
    $$cos^2\gamma = 1 - \dfrac{3}{4}$$
    $$cos\gamma = \pm\dfrac{1}{2}$$
    $$cos\gamma = \dfrac{1}{2}, cos\gamma = -\dfrac{1}{2}$$
    $$\gamma = 60^{\circ}, \gamma = 120^{\circ}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now