Suppose the source of light be situated at $$A(a,0,0)$$
where $$a\neq 0$$, $$AO=$$ incident ray, $$OB=$$ reflected ray.
$$ON=$$ normal to the mirror at $$0$$.
$$\therefore \angle AON=\angle NOB=\dfrac{\theta}{2}$$ (say)
Direction ratios of normal place are $$(1,-1,1)$$
$$\therefore $$ Direction cosine of normal : $$\left(\dfrac{1}{\sqrt{1^2+(-1)^2+1^2}},\dfrac{1}{\sqrt{1^2+(-1)^2+1^2}},\dfrac{1}{\sqrt{1^1(-1)^2+1^2}}\right)$$
$$=\left(\dfrac{1}{\sqrt{3}},\dfrac{-1}{\sqrt{3}},\dfrac{1}{\sqrt{3}}\right)$$
Hence, $$\cos \left(\dfrac{\theta}{2}\right)=\dfrac{1}{\sqrt{3}}$$
Direction ratio of $$AO$$ are $$(\alpha,0,0)$$ and direction cosines are $$(1,0,0)$$
$$\therefore$$ Now let $$l, m, n$$ be direction cosines of reflected ray $$OB$$.
$$\therefore \dfrac{1+1}{2\cos\dfrac{\theta}{2}}=\dfrac{1}{\sqrt{3}}$$
$$\Rightarrow 1+1=\dfrac{2}{\sqrt{3}}\cos \dfrac{\theta}{2}=\dfrac{2}{3}$$
$$\Rightarrow 1=\dfrac{2}{3}-1=\dfrac{-1}{3}$$
$$\dfrac{m+o}{2\cos\left(\dfrac{\theta}{2}\right)}=\dfrac{-1}{\sqrt{3}}$$
$$\Rightarrow m=\dfrac{-2}{\sqrt{3}}\cos\dfrac{\theta}{2}=\dfrac{-2}{3}$$
$$\dfrac{n+o}{2\cos\left(\dfrac{\theta}{2}\right)}=\dfrac{1}{\sqrt{3}}$$
$$\Rightarrow n=\dfrac{2}{\sqrt{3}}\cos\dfrac{\theta}{2}=\dfrac{2}{3}$$
$$\therefore$$ Direction cosines of reflected ray are $$\left(\dfrac{-1}{3},\dfrac{-2}{3},\dfrac{2}{3}\right)$$