Self Studies

Three Dimensional Geometry Test - 44

Result Self Studies

Three Dimensional Geometry Test - 44
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Direction ratios of the normal to the plane passing through the points $$(0, 1, 1),(1, 1, 2)$$ and $$(-1, 2, -2)$$ are
    Solution
    $$\overrightarrow { a } =0\hat { i } +\hat { j } +\hat { k } ,\overrightarrow { b } =\hat { i } +\hat { j } +2\hat { k } ,\overrightarrow { c } =-\hat { i } +2\hat { j } -2\hat { k } $$
    $$ \therefore$$ Direction of line  $$\overrightarrow { AB }$$  and $$\overrightarrow { BC } \quad $$
    Directions of normal is perpendicular to that of lines in plane.
    $$\therefore  \overrightarrow { n } =\overrightarrow { AB } \times \overrightarrow { BC } =\left| \begin{matrix} \hat { i }  & \hat { j }  & \hat { k }  \\ 1 & 0 & 1 \\ -2 & 1 & -4 \end{matrix} \right| =\hat { -i } +2\hat { j } +\hat { k } $$
    $$\therefore$$ Directions of normal is $$(1,-2,-1)$$
  • Question 2
    1 / -0
    A line passes through the point $$(6,-7, -1)$$ and $$(2,-3,1)$$. if the angle $$\alpha$$ which the line makes with the positive direction of x-axis is acute, the direction cosines of the line are,
    Solution
    $$P(6,-7,-1)$$ and  $$Q(2,-3,1)$$
    $$\overrightarrow { PQ } =-4\hat { i } +4\hat { j } +2\hat { k } $$
    Direction of $$ \overrightarrow { PQ } =-2\hat { i } +2\hat { j } +\hat { k } $$
    $$ \hat { PQ } =\cfrac { -2 }{ 3 } \hat { i } +\cfrac { 2 }{ 3 } \hat { j } +\cfrac { 1 }{ 3 } \hat { k } =\cos { \alpha  } \hat { i } +\cos { \beta  } \hat { j } +\cos { \beta  } \hat { k } $$
    Since $$ \alpha $$ is acute.
     $$\therefore \cos { \alpha  } >0\\ \therefore \hat { PQ } =\cfrac { 2 }{ 3 } \hat { i } -\cfrac { 2 }{ 3 } \hat { j } -\cfrac { 1 }{ 3 } \hat { k } $$
    $$ \therefore$$ Direction of cosines  $$(\cfrac { 2 }{ 3 } ,\cfrac { -2 }{ 3 } ,\cfrac { -1 }{ 3 } )$$
  • Question 3
    1 / -0
    In a line $$OP$$ through the origin $$O$$ makes angles of $${90^ \circ },\,{60^ \circ }\,and\,{60^ \circ }$$ with $$x, y$$ and $$z$$ axis respectively then the direction cosines of $$OP$$ are  
    Solution

     We know that ,

    The direction cosines of a line making angle $$\alpha $$ with x-axis, $$\beta $$ with y- axis and $$\gamma $$ with z-axis are $$l,m,n.$$

    Then,

    $$l=\cos \alpha ,\,\,\,m=\cos \beta ,\,\,\,n=\cos \gamma $$

    Given that $$\alpha ={{90}^{0}},\,\,\,\,\beta ={{60}^{0}}\,and\,\,\,\,\gamma ={{60}^{0}}$$

    So, direction cosines of a line

    $$l=\cos {{90}^{0}},\,\,\,m=\cos {{60}^{0}},\,\,\,n=\cos {{60}^{0}}$$

    $$l=0,\,\,\,m=\dfrac{1}{2},\,\,\,n=\dfrac{1}{2}$$

    Therefore direction cosines are  $$\left( 0,\dfrac{1}{2},\dfrac{1}{2} \right)$$.

    Option (D) is correct answer.
  • Question 4
    1 / -0
    The direction cosines of the line which is perpendicular to the lines with direction cosines proportional to $$(1, -2, -2)$$ & $$(0, 2, 1)$$ are
    Solution
    $$\begin{array}{l} According\, to\, \, the\, \, question: \\ direction\, ratio\, equ:a,b,c\, \, and\, \, two\, line\, is{ {  } }perpendicular: \\ \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, (1,-2,-2,)\, \, \& \left( { 0,2,1 } \right)  \\ relation\, of\, direction\, ratio\, \, with\, perpendicular\, line\, is: \\ \, \Rightarrow { a_{ 1 } }{ a_{ 2 } }+{ b_{ 1 } }{ b_{ 2 } }+{ c_{ 1 } }{ c_{ 2 } }=0 \\ \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, a-2b-2c=0 \\ \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \underline { \, \, 0a+2b+c=0 }  \\ the\, ratio\, of\, 3direction\, po{ { int } }\, is: \\ \frac { a }{ 2 } =\frac { { -b } }{ 0 } =\frac { c }{ 2 }  \\ so\, the\, ratio\, is\, \left( { \frac { 2 }{ 3 } ,\frac { { -1 } }{ 3 } ,\frac { 2 }{ 3 }  } \right)  \\ and\, the\, \, { { correct } }\, option\, is\, A. \end{array}$$
  • Question 5
    1 / -0
    The projection of the join of the points $$(3,4,2),(5,1,8)$$ on the line whose d.c's are $$\left( {\frac{2}{7},\frac{3}{7},\frac{6}{7}} \right)$$ is 
    Solution
    Let $$A\equiv(3,4,2);\quad B\equiv (5,1,8)$$
    $$\bar { AB } =2\widehat { i} -3\widehat { j } +6\widehat { k} $$
    $$\bar{a}=dc=\cfrac{2}{7}\widehat{i}+\cfrac{3}{7}\widehat{j}+\cfrac{6}{7}\widehat{k}$$
    $$Projection=\bar{AB}\times \bar{a}=\cfrac{4}{7}-\cfrac{9}{7}+\cfrac{36}{7}=\cfrac{31}{7}$$
  • Question 6
    1 / -0
    A lines makes angles $$\dfrac{\alpha }{2},\dfrac{\beta }{2},\dfrac{\gamma }{2}$$ with positive direction of coordinate axes, then $$\cos \alpha  + \cos \beta  + \cos \gamma $$ is equal to
    Solution
    angles made with $$x,y,z$$ axis are $$\cfrac { \alpha  }{ 2 } ,\cfrac { \beta  }{ 2 } ,\cfrac { \gamma  }{ 2 } $$
    $$ \therefore \cos { ^{ 2 }\cfrac { \alpha  }{ 2 }  } +\cos { ^{ 2 }\cfrac { \beta  }{ 2 }  } +\cos { ^{ 2 }\cfrac { \gamma  }{ 2 }  } =1\\ \cos { 2\theta  } =2\cos { ^{ 2 }\theta  } -1\quad \quad \Rightarrow 1+\cos { 2\theta  } \\ \Rightarrow 2\cos { ^{ 2 }\cfrac { \alpha  }{ 2 }  } +2\cos { ^{ 2 }\cfrac { \beta  }{ 2 }  } +2\cos { ^{ 2 }\cfrac { \gamma  }{ 2 }  } =2\\ 1+\cos { \cfrac { 2\alpha  }{ 2 }  } +1+\cos { \cfrac { 2\beta  }{ 2 }  } +1+\cos { \cfrac { 2\gamma  }{ 2 }  } =2\\ \cos { \alpha  } +\cos { \beta  } +\cos { \gamma  } =-1$$
  • Question 7
    1 / -0
    The equation to the altitude of the altitude triangle formed by $$\left( {1,1,1} \right).\left( {1,2,3} \right),\left( {2, - 1,1} \right)$$ through $$\left( {1,1,1} \right)$$  is 
    Solution
    drs of $$BC=(x_{b}-x_{c}), (y_{b}-y_{c}), (z_{b}-z_{c})$$
    $$=(-1, 3, 2)$$
    $$\therefore$$ drt of $$AD$$ will be of the form
    $$-1(l)+3(m)+2(n)=0$$          $$(l_{1}l_{2}+m_{1}m_{2}+n_{1}n_{2})=0$$
    $$l-3m-2n=0$$
    $$\vec{r}=\vec{a}+t\vec{b}$$
    $$\vec{r}=a_{x}\hat{i}+a_{y}\hat{j}+a_{z}\hat{k}+t(x_{d}-x_{a})\hat{i}+(y_{d}-y_{a})\hat{j}+(z_{d}-z_{a})\hat{k})$$
    when $$l-3m-2n=0$$
    $$\therefore \vec{r}=(\hat{i}+\hat{j}+\hat{k})+t(l\hat{i}+m\hat{j}+n\hat{k})$$
    if $$l=1$$ and $$m=-1$$
    $$\Rightarrow 1-3(-1)-2n=0$$
    $$2n\Rightarrow n=2$$
    $$(1, -1,2)$$ is a dutim
    $$\therefore \vec{r}=(\hat{i}+\hat{j}+\hat{k})+t(\hat{i}.\hat{j}+2\hat{k})$$
  • Question 8
    1 / -0
    A vector $$\vec{V}$$ is inclined at equal angles to axes OX, OY and OZ. If the magnitude of $$\vec{V}$$ is $$6$$ units, then $$\vec{V}$$ is?
    Solution
    Let the angle subtended with each of the coordinate axis be Q
    then
    $${l} = {m} = {n} = \cos \theta $$
    $${l^2} = {m^2} = {n^2} = 1 $$
    $${\cos ^2}\theta  + {\cos ^2}\theta  + {\cos ^2}\theta  = 1$$
    $$3{\cos ^2}\theta  = 1$$
    $${\cos ^2} = \dfrac{1}{3}$$
    $$\cos {\theta ^{}} =  \pm \dfrac{1}{{\sqrt 3 }}$$
    therefore l = m = n = $$ \pm \dfrac{1}{{\sqrt 3 }}$$
    then vector 
    $$\begin{array}{l} \vec { v } =6\times \left( { \dfrac { 1 }{ { \sqrt { 3 }  } } \hat { i } +\dfrac { 1 }{ { \sqrt { 3 }  } } \hat { j } +\dfrac { 1 }{ { \sqrt { 3 }  } } \hat { k }  } \right)  \end{array}$$ 
    $$\begin{array}{l} \dfrac { { 6\sqrt { 3 }  } }{ 3 } (\widehat { i } +\widehat { j } +\widehat { k } ) \\ 2\sqrt { 3 } (\widehat { i } +\widehat { j } +\widehat { k } ) \end{array}$$
  • Question 9
    1 / -0
    A point at a distance of $$\sqrt6$$ from the origin which lies on the straight line $$\frac{x-1}{1}=\frac{y-2}{2}=\frac{z+1}{3}$$ will be
    Solution
    $$L:\cfrac { x-1 }{ 1 } =\cfrac { y-2 }{ 2 } =\cfrac { z+1 }{ 3 } =k\\ \therefore (k+1,2k+3,3k-1)\\ \sqrt { { (k+1) }^{ 2 }+{ (2k+2) }^{ 2 }+{ (3k-1) }^{ 2 } } =\sqrt { 6 } \\ { (k+1) }^{ 2 }+{ (2k+2) }^{ 2 }+{ (3k-1) }^{ 2 }=6\\ { k }^{ 2 }+1+2k+4{ k }^{ 2 }+4+8k+9{ k }^{ 2 }+1-6k=6\\ 14{ k }^{ 2 }+4k=0\\ \therefore \Rightarrow k=0,\cfrac { -2 }{ 7 } $$
    $$ \therefore$$ point  $$(x,y,z)=(1,2,-1)\quad (\cfrac { 5 }{ 7 } ,\cfrac { 10 }{ 7 } ,\cfrac { -13 }{ 7 } )$$
  • Question 10
    1 / -0
    The angle between the lines whose direction cosines satisfy the equations $$l+m+n=0$$ and $$l^{2}+m^{2}+n^{2}$$ is
    Solution

    According to question.................

    $$\begin{array}{l} \Rightarrow l+m+n=0----(i) \\ \, \, \, \, \, \, l=-\, (m+n) \\ \, \Rightarrow { l^{ 2 } }={ m^{ 2 } }+{ n^{ 2 } }---(ii) \\ \, \, \, \, \, \, \, \, \Rightarrow \, { \left( { -\, (m+n) } \right) ^{ 2 } }={ m^{ 2 } }+{ n^{ 2 } } \\ \, \, \, \, \, \, \, \, \, \Rightarrow { (m+n)^{ 2 } }={ m^{ 2 } }+{ n^{ 2 } } \\ \, \, \, \, \, \, \Rightarrow { m^{ 2 } }+{ n^{ 2 } }+2mn={ m^{ 2 } }+{ n^{ 2 } } \\ \, \, \, \, \, \, \, \, \, \, \, \Rightarrow 2mn=0 \\ \, \, \, \, \, \, \, \, \, \, \, \therefore \, \, \, \, mn=0 \\ there\, \, are\, \, two\, \, \, case:\, \, \, m=0,n=0 \\ case\, \, 1:\, \, (m=0) \\ \, \, \, \, \, \, \, \, \, \, \, \, \, \, l=-n\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \left| { u{ { sing } }\, equ\, :l+m+n=0----(i) } \right.  \\ \, suppose: \\ \, l=k,\, \, m=o,\, \, n=-k \\ \Rightarrow { l^{ 2 } }+{ m^{ 2 } }+{ n^{ 2 } }=1 \\ \Rightarrow { k^{ 2 } }+0+{ k^{ 2 } }=1 \\ \Rightarrow k=\dfrac { 1 }{ { \sqrt { 2 }  } } \, \,  \\ Apply, \\ \Rightarrow l=\dfrac { 1 }{ { \sqrt { 2 }  } } \, ,\, \, \, \, m=o,\, \, \, \, n=\dfrac { { -1 } }{ { \sqrt { 2 }  } } \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, (we\, Asume:\, { l_{ 1 } }=\dfrac { 1 }{ { \sqrt { 2 }  } } \, ,\, \, \, \, { m_{ 1 } }=o,\, \, \, \, { n_{ 1 } }=\dfrac { { -1 } }{ { \sqrt { 2 }  } } \,  \\ case\, \, 2:\, \, \, (n=0) \\ \, \, \, \, \, \, \, \, \, \, \, \, \, \, l=-m\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \left| { u{ { sing } } } \right. \, \, equ:l+m+n=0----(i) \\suppose:\, \,  \\ \, \, \Rightarrow \, \, l=k,\, \, \, \, \, m=-k,\, \, \, n=0\, \, \, \, \, \, \, ( \\ \, then, \\ { l^{ 2 } }+{ m^{ 2 } }+{ n^{ 2 } }=1 \\ { k^{ 2 } }+{ k^{ 2 } }+0=1 \\ k=\dfrac { 1 }{ { \sqrt { 2 }  } }  \\ apply, \\ \Rightarrow l=\dfrac { 1 }{ { \sqrt { 2 }  } } \, ,\, \, m=\dfrac { { -1 } }{ { \sqrt { 2 }  } } ,\, \, n=0\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, (we\, Assume:{ l_{ 2 } }=\dfrac { 1 }{ { \sqrt { 2 }  } } \, ,\, \, { m_{ 2 } }=\dfrac { { -1 } }{ { \sqrt { 2 }  } } ,\, \, { n_{ 2 } }=0\, \,  \\ Angle\, \, between\, \, \, 2\, lines=\theta  \\ \cos  \theta =\dfrac { { \, \, \, \, \, \, \, ({ l_{ 1 } }+{ m_{ 1 } }+{ n_{ 1 } })\, .({ l_{ 2 } }+{ m_{ 2 } }+{ n_{ 2 } })\, \, \, \,  } }{ { \sqrt { ({ l_{ 1 } }^{ 2 }+{ m_{ 1 } }^{ 2 }+{ n_{ 1 } }^{ 2 })\, .\, \, ({ l_{ 2 } }^{ 2 }+{ m_{ 2 } }^{ 2 }+{ n_{ 2 } }^{ 2 })\,  }  } }  \\ \, \, \, =\dfrac { { { l_{ 1 } }\, { l_{ 2 } }+{ m_{ 1 } }{ m_{ 2 } }+{ n_{ 1 } }{ n_{ 2 } } } }{ { \sqrt { ({ l_{ 1 } }^{ 2 }+{ m_{ 1 } }^{ 2 }+{ n_{ 1 } }^{ 2 })\, \, (\, { l_{ 2 } }^{ 2 }+{ m_{ 2 } }^{ 2 }+{ n_{ 2 } }^{ 2 }) }  } }  \\ \, =\dfrac { { \dfrac { 1 }{ { \sqrt { 2 }  } } . \dfrac { 1 }{ { \sqrt { 2 }  } } + 0 .\dfrac { { -1 } }{ { \sqrt { 2 }  } } +\dfrac { { -1 } }{ { \sqrt { 2 }  } } . 0 } }{ { \sqrt { \left( { \dfrac { 1 }{ 2 } +\dfrac { 1 }{ 2 }  +0} \right) \, \, \left( { \dfrac { 1 }{ 2 } +\dfrac { 1 }{ 2 } \ +0 } \right)  }  } } =\dfrac { { \dfrac { 1 }{ 2 }  } }{ { \sqrt { 1 }  } }  \\ \cos  \theta =\dfrac { 1 }{ 2 } ,\, \, \, \, \, \, \, \, \therefore \, \, \, \theta =\dfrac { \pi  }{ 3 }  \end{array}$$

    So,that the correct option is  B.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now