According
to question.................
$$\begin{array}{l}
\Rightarrow l+m+n=0----(i) \\ \, \, \, \, \, \, l=-\, (m+n) \\ \, \Rightarrow {
l^{ 2 } }={ m^{ 2 } }+{ n^{ 2 } }---(ii) \\ \, \, \, \, \, \, \, \, \Rightarrow
\, { \left( { -\, (m+n) } \right) ^{ 2 } }={ m^{ 2 } }+{ n^{ 2 } } \\ \, \, \,
\, \, \, \, \, \, \Rightarrow { (m+n)^{ 2 } }={ m^{ 2 } }+{ n^{ 2 } } \\ \, \,
\, \, \, \, \Rightarrow { m^{ 2 } }+{ n^{ 2 } }+2mn={ m^{ 2 } }+{ n^{ 2 } } \\
\, \, \, \, \, \, \, \, \, \, \, \Rightarrow 2mn=0 \\ \, \, \, \, \, \, \, \,
\, \, \, \therefore \, \, \, \, mn=0 \\ there\, \, are\, \, two\, \, \, case:\,
\, \, m=0,n=0 \\ case\, \, 1:\, \, (m=0) \\ \, \, \, \, \, \, \, \, \, \, \, \,
\, \, l=-n\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \,
\left| { u{ { sing } }\, equ\, :l+m+n=0----(i) } \right. \\ \, suppose: \\
\, l=k,\, \, m=o,\, \, n=-k \\ \Rightarrow { l^{ 2 } }+{ m^{ 2 } }+{ n^{ 2 }
}=1 \\ \Rightarrow { k^{ 2 } }+0+{ k^{ 2 } }=1 \\ \Rightarrow k=\dfrac { 1 }{ {
\sqrt { 2 } } } \, \, \\ Apply, \\ \Rightarrow l=\dfrac { 1 }{ {
\sqrt { 2 } } } \, ,\, \, \, \, m=o,\, \, \, \, n=\dfrac { { -1 } }{ {
\sqrt { 2 } } } \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \,
\, \, \, \, \, \, (we\, Asume:\, { l_{ 1 } }=\dfrac { 1 }{ { \sqrt { 2 }
} } \, ,\, \, \, \, { m_{ 1 } }=o,\, \, \, \, { n_{ 1 } }=\dfrac { { -1 } }{ {
\sqrt { 2 } } } \, \\ case\, \, 2:\, \, \, (n=0) \\ \, \, \, \, \,
\, \, \, \, \, \, \, \, \, l=-m\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \,
\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \,
\, \, \, \, \, \, \, \, \, \, \, \, \left| { u{ { sing } } } \right. \, \,
equ:l+m+n=0----(i) \\suppose:\, \, \\ \, \, \Rightarrow \, \, l=k,\, \, \,
\, \, m=-k,\, \, \, n=0\, \, \, \, \, \, \, ( \\ \, then, \\ { l^{ 2 } }+{ m^{
2 } }+{ n^{ 2 } }=1 \\ { k^{ 2 } }+{ k^{ 2 } }+0=1 \\ k=\dfrac { 1 }{ { \sqrt {
2 } } } \\ apply, \\ \Rightarrow l=\dfrac { 1 }{ { \sqrt { 2
} } } \, ,\, \, m=\dfrac { { -1 } }{ { \sqrt { 2 } } } ,\, \, n=0\,
\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \,
(we\, Assume:{ l_{ 2 } }=\dfrac { 1 }{ { \sqrt { 2 } } } \, ,\, \, { m_{
2 } }=\dfrac { { -1 } }{ { \sqrt { 2 } } } ,\, \, { n_{ 2 } }=0\,
\, \\ Angle\, \, between\, \, \, 2\, lines=\theta \\ \cos
\theta =\dfrac { { \, \, \, \, \, \, \, ({ l_{ 1 } }+{ m_{ 1 } }+{ n_{ 1 } })\,
.({ l_{ 2 } }+{ m_{ 2 } }+{ n_{ 2 } })\, \, \, \, } }{ { \sqrt { ({ l_{ 1
} }^{ 2 }+{ m_{ 1 } }^{ 2 }+{ n_{ 1 } }^{ 2 })\, .\, \, ({ l_{ 2 } }^{ 2 }+{
m_{ 2 } }^{ 2 }+{ n_{ 2 } }^{ 2 })\, } } } \\ \, \, \, =\dfrac
{ { { l_{ 1 } }\, { l_{ 2 } }+{ m_{ 1 } }{ m_{ 2 } }+{ n_{ 1 } }{ n_{ 2 } } }
}{ { \sqrt { ({ l_{ 1 } }^{ 2 }+{ m_{ 1 } }^{ 2 }+{ n_{ 1 } }^{ 2 })\, \, (\, {
l_{ 2 } }^{ 2 }+{ m_{ 2 } }^{ 2 }+{ n_{ 2 } }^{ 2 }) } } } \\ \,
=\dfrac { { \dfrac { 1 }{ { \sqrt { 2 } } } . \dfrac { 1 }{ { \sqrt { 2
} } } + 0 .\dfrac { { -1 } }{ { \sqrt { 2 } } } +\dfrac { { -1 }
}{ { \sqrt { 2 } } } . 0 } }{ { \sqrt { \left( { \dfrac { 1 }{ 2 } +\dfrac
{ 1 }{ 2 } +0} \right) \, \, \left( { \dfrac { 1 }{ 2 } +\dfrac { 1 }{ 2 }
\ +0 } \right) } } } =\dfrac { { \dfrac { 1 }{ 2 } } }{ {
\sqrt { 1 } } } \\ \cos \theta =\dfrac { 1 }{ 2 } ,\, \, \,
\, \, \, \, \, \therefore \, \, \, \theta =\dfrac { \pi }{ 3 }
\end{array}$$
So,that the correct
option is B.