$$\textbf{Step -1: Find a,b,c}$$
$$\text{The line is passing through }(2,3,-5)\text{ and let the direction ratios of the line be a,b,c}$$
$$\text{Then the equation of the line is}$$
$$\dfrac{x-2}{a}=\dfrac{y-3}{b}=\dfrac{z-(-5)}{c}\Rightarrow{\dfrac{x-2}{a}=\dfrac{y-3}{b}=\dfrac{z+4}{c}=k~(\text{let})}$$
$$\dfrac{x-2}{a}=k\Rightarrow{x-2=ak}\Rightarrow{x=ak+2}$$
$$\dfrac{y-3}{b}=k\Rightarrow{y-3=bk}\Rightarrow{y=bk+3}$$
$$\dfrac{z+5}{c}=k\Rightarrow{z+5=ck}\Rightarrow{z=ck-5}$$
$$\text{Since the line passes through the origin i.e. }(0,0,0)\text{ then,}$$
$$\text{ak+2=0}\Rightarrow{a=-\dfrac{2}{k}}$$
$$\text{bk+3=0}\Rightarrow{b=-\dfrac{3}{k}}$$
$$\text{ck-5=0}\Rightarrow{c=\dfrac{5}{k}}$$
$$\textbf{Step -2: Find the equation of plane.}$$
$$\text{Then the equation of required plane is,}$$
$$ax+by+cz=d\Rightarrow{\left(-\dfrac{2}{k}\right)x+\left(-\dfrac{3}{k}\right)y+\left(\dfrac{5}{k}\right)z=d}\Rightarrow{-2x-3y+5z=dk}$$
$$\text{The foot of the perpendicular is }(2,3,-5)\text{ then it satisfies the equation of the plane.}$$
$$\therefore{-2\times2+-3\times3+5\times-5=dk}\Rightarrow{dk=-4-9-25=-38}$$
$$\text{Then the equation of the required plane is,}$$
$$-2x-3y+5z=dk\Rightarrow{-2x-3y+5z=-38}$$
$$\therefore{2x+3y-5z=38}$$
$$\textbf{Hence, option (B) 2x+3y-5z=38}\textbf{ is correct answer.}$$