Self Studies

Three Dimensional Geometry Test - 45

Result Self Studies

Three Dimensional Geometry Test - 45
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    A line passes through the points $$(6,-7,-1)$$ and $$(2,-3, 1)$$. If the angle a which the line makes with the positive direction of x-axis is acute, the direction cosines of the line are.
    Solution
    Direction Ratios of line joining $$(6,-7,-1)$$ and $$(2,-3,1)$$ are

    $$\rightarrow (6,-2,-7-(-3)-(-1))$$

    $$\rightarrow (4,-4,-2)$$

    if it make acute angle with positive x-axis then $$D.R(x)>0$$

    D.C are $$\left(\dfrac{4}{\sqrt{4^2+4^2+2^2}},\dfrac{-4}{4^2+4^2+2^2},\dfrac{-2}{4^2+4^2+2^2}\right)$$

    $$\left(\dfrac{4}{6},\dfrac{-4}{6},\dfrac{-2}{6}\right)$$

    $$\left(\dfrac{2}{3},\dfrac{-2}{3},\dfrac{-1}{3}\right)$$
    $$A$$ is correct.
  • Question 2
    1 / -0
    Prove that the points $$A=(1,2,3),B(3,4,7),C(-3,-2,-5)$$ are collinear & find the ratio in which $$B$$ divides $$AC$$. 
    Solution
    $$A(1,2,3),B(3,4,7),C(-3,-2,-5)$$
    $$\overrightarrow { AB } =\,\,2\hat{i}+2\hat{j}+4\hat{k}$$
    $$\overrightarrow {BC}\,\,-6\hat{i}-6\hat{j}-12\hat{k}$$
    If points are collinear then  $$|(\overrightarrow {AB  } ).(\overrightarrow { BC } )|=|\overrightarrow {AB  } ||\overrightarrow {BC  } |$$
    $$\overrightarrow {AB  } .\overrightarrow {AC  } =-12-12-24=-48$$
    $$|\overrightarrow { AB } .\overrightarrow {AC  } |=48$$
    $$|\overrightarrow { AB } |.|\overrightarrow {AC  } |=\sqrt{24}\sqrt{216}=2\sqrt{24}\sqrt{24}=48$$
    Points are collinear
    $$|\overrightarrow {AC  } |=|-4\hat{i}-4\hat{j}-8\hat{k}|=4\sqrt{6}$$
    $$|\overrightarrow {AB  } |=2\sqrt{6}$$
    $$B$$ divides $$AC$$ in the ration $$2:3$$

  • Question 3
    1 / -0
    Equation of pair of lines passing through origin and making and angle $${\tan ^{ - 1}}2$$ with the lines $$4x-3y+7=0$$.
    Solution
    Slope of the line $$4x-3y+7=0$$ is $${m}_{1}=-\dfrac{coeff.\,of\,x}{coeff.\,of\,y}=\dfrac{4}{3}$$
    $$\tan{\theta}=\left|\dfrac{m-{m}_{1}}{1+m{m}_{1}}\right|$$

    Given: $${\tan}^{-1}{2}=\theta\Rightarrow\,\tan{\theta}=2$$
    $$\Rightarrow\,2=\left|\dfrac{m-\dfrac{4}{3}}{1+\dfrac{4m}{3}}\right|$$
    $$\Rightarrow\,\left|\dfrac{3m-4}{3+4m}\right|=2\\$$
    $$\Rightarrow\,\dfrac{3m-4}{3+4m}=\pm\,2\\$$
    $$\Rightarrow\,3m-4=\pm\,2\left(4m+3\right)$$
    $$\Rightarrow\,3m-4=8m+6$$ and $$3m-4=-8m-6$$
    $$\Rightarrow\,-5m=10$$ and $$11m=-2$$
    $$\Rightarrow\,m=-2$$ and $$m=\dfrac{-2}{11}$$
    Equation is $$y=-2x$$ and $$y=\dfrac{-2}{11}x$$
    $$\Rightarrow\,2x+y=0$$ and $$2x+11y=0$$

    Pair of lines is $$\left(2x+y\right)\left(2x+11y\right)=0$$
    or $$4{x}^{2}+22xy+2xy+11{y}^{2}=0$$
    or $$4{x}^{2}+24xy+11{y}^{2}=0$$ is the required equation.
    Which is equivalent to equation given in option A 
    $${\left( {4x - 3y} \right)^2} - 4{\left( {3x + 4y} \right)^2} = 0$$
  • Question 4
    1 / -0
    If $$\vec { a } ,\vec { b } ,\vec { c } $$ are three non-zero vectors, no two of which are collinear and the vector $$\vec { a } +\vec { b } $$ is collinear with $$\vec { c }, \vec { b } +\vec { c } $$ is collinear with $$\vec {a},$$ then $$\vec { a } +\vec { b } +\vec { c }$$ is equal to -
    Solution
    $$\bar a+\bar b=K_{1}\bar c $$

    $$\bar b+\bar c=K_{2}\bar a $$

    $$\bar a- \bar c=K_{1}c-K_{2}\bar a$$

    $$(k_{2}+1) \bar a-\bar c(1+k_{1})$$=0

    $$k_{2}=-1 $$ and $$k_{1}=-1 $$

    $$\bar{a}+\bar{b}+\bar{c}=0$$
  • Question 5
    1 / -0
    Find the equation of the plane if the foot of the perpendicular from origin to the plane is $$ (2, 3, -5 ) $$
    Solution

    $$\textbf{Step -1: Find a,b,c}$$
                     $$\text{The line is passing through }(2,3,-5)\text{ and let the direction ratios of the line be a,b,c}$$
                     $$\text{Then the equation of the line is}$$
                     $$\dfrac{x-2}{a}=\dfrac{y-3}{b}=\dfrac{z-(-5)}{c}\Rightarrow{\dfrac{x-2}{a}=\dfrac{y-3}{b}=\dfrac{z+4}{c}=k~(\text{let})}$$
                     $$\dfrac{x-2}{a}=k\Rightarrow{x-2=ak}\Rightarrow{x=ak+2}$$
                     $$\dfrac{y-3}{b}=k\Rightarrow{y-3=bk}\Rightarrow{y=bk+3}$$
                     $$\dfrac{z+5}{c}=k\Rightarrow{z+5=ck}\Rightarrow{z=ck-5}$$
                      $$\text{Since the line passes through the origin i.e. }(0,0,0)\text{ then,}$$
                      $$\text{ak+2=0}\Rightarrow{a=-\dfrac{2}{k}}$$
                      $$\text{bk+3=0}\Rightarrow{b=-\dfrac{3}{k}}$$
                      $$\text{ck-5=0}\Rightarrow{c=\dfrac{5}{k}}$$
    $$\textbf{Step -2: Find the equation of plane.}$$
                      $$\text{Then the equation of required plane is,}$$
                      $$ax+by+cz=d\Rightarrow{\left(-\dfrac{2}{k}\right)x+\left(-\dfrac{3}{k}\right)y+\left(\dfrac{5}{k}\right)z=d}\Rightarrow{-2x-3y+5z=dk}$$
                      $$\text{The foot of the perpendicular is }(2,3,-5)\text{ then it satisfies the equation of the plane.}$$
                      $$\therefore{-2\times2+-3\times3+5\times-5=dk}\Rightarrow{dk=-4-9-25=-38}$$
                      $$\text{Then the equation of the required plane is,}$$
                      $$-2x-3y+5z=dk\Rightarrow{-2x-3y+5z=-38}$$
                      $$\therefore{2x+3y-5z=38}$$
    $$\textbf{Hence, option (B) 2x+3y-5z=38}\textbf{ is correct answer.}$$

  • Question 6
    1 / -0
    If the points with position vectors $$10\hat { i } +\lambda \hat { j } ,3\hat { i } -\hat { j } $$ and $$4\hat { i } +5\hat { j } $$ are collinear then $$\lambda$$ is 
    Solution
    position vectors : $$ (10\hat{i}+\lambda \hat{j}) a, (3\hat{i}-\hat{j})b, (4\hat{i}+5\hat{j})c$$
    since they are collinear, so
    $$ \vec{AB}$$ must parallel to $$ \vec{BC}$$
    $$ \therefore \vec{AB} = b-a = (3-10)\hat{i}+(-1-\lambda)\hat{j})$$
    $$ = (-7\hat{i}+(-1-\lambda )\hat{j})$$
    $$ \vec{BC} = \bar{C}-a = (4-3)\hat{i}+(5-(-1)) \hat{j}$$
    $$ = \hat{i}+6\hat{j}$$
    $$ \therefore \dfrac{-7}{1} = \dfrac{-1-\lambda }{6}$$
    $$ \therefore -42 = -1-\lambda $$
    $$ \lambda  = -1+42 $$
    $$ \lambda  = 41 $$ (option A)

  • Question 7
    1 / -0
    Point $$\left(\alpha,\beta,\gamma\right)$$ lies on the plane $$x+y+z=2$$. Let $$\overrightarrow{a}=\alpha\hat{i}+\beta\hat{j}+\gamma\hat{k}$$ and $$\hat{k}\times \left(\hat{k}\times \overrightarrow{a}\right)=0$$ then $$\gamma=$$
    Solution
    $$\hat{k}\times \left(\hat{k}\times \overrightarrow{a}\right)=\left(\hat{k}.\overrightarrow{a}\right)\hat{k}-\left(\hat{k}.\hat{k}\right)\overrightarrow{a}$$
    $$ =\gamma\hat{k}-\left(\alpha\hat{i}+\beta\hat{j}+\gamma\hat{k}\right)=0$$
    $$\Rightarrow \alpha\hat{i}+\beta\hat{j}=0$$
    $$\therefore \alpha=\beta=0$$
    $$\left(\alpha,\beta,\gamma\right)$$ lies on the plane $$x+y+z=2 \left(given\right)$$
    $$\therefore \alpha+\beta+\gamma=2 \Rightarrow \gamma=2$$ where $$\alpha=\beta=0$$
  • Question 8
    1 / -0
    If the points with position vectors $$60\hat{i}+3\hat{j}, 40\hat{i}-8\hat{j}$$ and $$a\hat{i}-52j$$ are collinear, then $$a=?$$
    Solution

    Suppose, position vector $$A=60\widehat i+3\widehat j$$

    position vector $$B=40\widehat i-8\widehat j$$

    position vector $$C=a\widehat i-52\widehat j$$

    Now, find vector AB and BC

    $$AB= -20\widehat i-11\widehat j$$

    $$BC= (a-40)\widehat i-44\widehat j$$

    To be collinear,  angle between the vector AB and BC made by the given position vectors should be 0 or 180 degree.

    That’s why the cross product of  the vectors should be zero

    $$ABXBC=(-20\widehat i-11\widehat j)X(a-40)\widehat i-44\widehat j$$

    $$0\widehat i+0\widehat j+(880+11(a-40))=0$$

    $$a-40= -80$$

    $$a=-40$$

    Therefore, a should be $$-40$$ to be the given positions vectors collinear.


  • Question 9
    1 / -0
    If $$A ( 2 \overline{i} - \overline{j} - 3 \overline{k} , B ( 4 \overline {i} + \overline{j} - \overline{k} )$$ and $$ D( \overline{i} - \overline{j} - 2 \overline{k})$$ then the vector equation of the plane parallel to $$ \overline{ABC} $$ and passing through the centroid of the tetrahedron $$ABCD$$ is :
    Solution

  • Question 10
    1 / -0
    The distance of the point $$3\hat{i}+5\hat{k}$$ from the line parallel to the vector $$6\hat{i}+\hat{j}-2\hat{k}$$ and passing through the point $$8\hat{i}+3\hat{j}+\hat{k}$$ is 
    Solution
    The distance of the point  $$\overrightarrow{c}$$ from the line
     $$\overrightarrow{r}=\overrightarrow{a}+s\overrightarrow{b}$$ is $$\dfrac{\left|\left(\overrightarrow{c}-\overrightarrow{a}\right)\times \overrightarrow{b}\right|} {\left|\overrightarrow{b}\right|}$$
    $$\overrightarrow{c}=3\hat{i}+5\hat{k},\overrightarrow{a}=8\hat{i}+3\hat{j}+\hat{k},\overrightarrow{b}=6\hat{i}+\hat{j}-2\hat{k}$$
    $$\left(\overrightarrow{c}-\overrightarrow{a}\right)\times \overrightarrow{b}=\left|\begin{matrix} \hat{i}&\hat{j}&\hat{k} \\-5&-3&4 \\6&1&-2\end{matrix}\right|$$
    $$=\hat{i}\left(6-4\right)-\hat{j}\left(10-24\right)+\hat{k}\left(-5+18\right)$$
    $$ =\hat{i}\left(2\right)-\hat{j}\left(-14\right)+\hat{k}\left(13\right)$$
    $$  =2\hat{i}+14\hat{j}+13\hat{k}$$
    Distance $$ =\dfrac{\sqrt{{2}^{2}+{14}^{2}+{13}^{2}}} {\sqrt{{6}^{2}+{1}^{2}+{2}^{2}}}=\sqrt{\dfrac{369}{41}}=3$$ on simplification
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now