Self Studies

Three Dimensional Geometry Test - 49

Result Self Studies

Three Dimensional Geometry Test - 49
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$\left(\dfrac {1}{2},\dfrac {1}{3},n\right)$$ are the direction cosines of a line then the value of $$n$$ is
    Solution
    Given direction cosines are $$\cfrac { 1 }{ 2 } ,\cfrac { 1 }{ 3 } ,n$$
    we have that if $$l,m,n$$ are direction cosines of a line then $${ l }^{ 2 }+{ m }^{ 2 }+{ n }^{ 2 }=1$$
    $$\cfrac { 1 }{ 4 } +\cfrac { 1 }{ 9 } +{ n }^{ 2 }=1\\ \Rightarrow { n }^{ 2 }=1-(\cfrac { 13 }{ 36 } )=\cfrac { 23 }{ 36 } \\ n=\cfrac { \sqrt { 23 }  }{ 6 } $$
  • Question 2
    1 / -0
    The angle between the pair of lines with direction ratios (1, 1, 2) and $$(\sqrt{3} - 1, -\sqrt{3} - 1, 4)$$ is 
    Solution
    $$cos \theta = \dfrac{1(\sqrt{3} - 1) + 1 (-\sqrt{3} - 1) + 2(4)}{\sqrt{1^2 + 1^2 + 2^2} \sqrt{(\sqrt{3} - 1)^2 + (-\sqrt{3} - 1)^2 + 4^2}}$$
    $$= \dfrac{\sqrt{3} - 1 - \sqrt{3} - 1 + 8}{\sqrt{6}. \sqrt{4 - 2 \sqrt{3} + 4 + 2\sqrt{3} + 16}}$$
    $$= \dfrac{6}{\sqrt{6} . \sqrt{24}}$$
    $$= \dfrac{6}{12}$$
    $$= \dfrac{1}{2}$$
    $$\theta = 60^o$$
  • Question 3
    1 / -0
    A line makes angles $$\alpha,\beta,\gamma,\delta$$ with the four diagonals of a cube then $$\cos^{2}\alpha+\cos^{2}\beta+\cos^{2}\gamma+\cos^{2}\delta$$ is equal to
    Solution
    REF.Image
    Take 'O' as a corner
    $$OA,OB,OC$$ are 3 edges through the axes
    Let $$OA=OB=OC=a$$
    coordinates of $$O=(o,o,o)$$
    $$A(a,o,o) B(o,a,o) C(o,o,a)$$
    $$P(a,a,o) L(o,a,a) M(a,o,a) N(a,a,o)$$
    The four diagonals $$OP, AL, BM, CN$$
    Direction cosine of $$OP : a-o,a-o,a-o = a,a,a = 1,1,1$$
    Direction cosine of $$AL : o-a,a-o,a-o = -a,a,a = -1,1,1$$
    Direction cosine of $$BM : a-o,o-a,a-o = a,-a,a = 1,-1,1$$
    Direction cosine of $$CN : a-o,a-o,o-a = a,a,-a = 1,1,-1$$
    $$\therefore $$ DC's of OP are $$\displaystyle\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}}$$
    DC's of AL are $$\displaystyle\dfrac{-1}{\sqrt{3}},\dfrac{1}{\sqrt{3}},\frac{1}{\sqrt{3}}$$
    DC's of BM are $$\displaystyle\dfrac{1}{\sqrt{3}},\dfrac{-1}{\sqrt{3}},\frac{1}{\sqrt{3}}$$
    DC's of CN are $$\dfrac{1}{\sqrt{3}},\dfrac{1}{\sqrt{3}},\dfrac{-1}{\sqrt{3}}$$
    Let l,m,n be dc's of line and line makes angle $$\alpha $$
    with OP :- $$\displaystyle \cos \alpha = l(\frac{1}{\sqrt{3}})+m(\frac{1}{\sqrt{3}})+n(\frac{1}{\sqrt{3}})=\frac{l+m+n}{\sqrt{3}}$$
    Similarly $$\cos\, \beta =\dfrac{-l+m+n}{\sqrt{3}}$$ 
    $$\cos \delta  = \dfrac{l+m-n}{\sqrt{3}}$$
    $$\cos\gamma =\dfrac{l-m+n}{\sqrt{3}}$$
    suaring and adding all the four
    i.e ; $$\cos^{2}\alpha +\cos^{2}\beta +\cos^{2}\gamma +\cos^{2}\delta $$
    $$= \dfrac{1}{3}[(l+m+n)^{2}+(-l+m+n)^{2}+(l-m+n)^{2}+(l+m-n)^{2}]$$
    $$=\dfrac{1}{3}[4l^{2}+4m^{2}+4n^{2}]=\dfrac{4}{3}(l^{2}+m^{2}+n^{2})$$
    $$[\because l^{2}+m^{2}+n^{2}=1]=\dfrac{4}{3}$$
    $$\therefore \cos^{2}\alpha +\cos^{2}\beta +\cos^{2}\gamma +\cos^{2}\delta =\dfrac{4}{3}$$

  • Question 4
    1 / -0
    The direction ratios of the line, given by the planes x - y + z - 5 = 0, x - 3y - 6 = 0 are 
    Solution
    Given,

    $$x – y + z – 5 = 0 = x – 3y – 6$$

    $$\Rightarrow  x – y + z – 5 = 0$$

    $$x – 3y – 6 = 0$$

    $$\Rightarrow x – y + z – 5 = 0 $$  (1)

    $$x = 3y + 6$$  (2)

    From (1) and (2) we get,

    $$3y + 6 – y + z – 5 = 0$$

    $$2y + z + 1 = 0$$

    $$y =\dfrac{-z-1}{2}$$

    Also, $$y=\dfrac{x-6}{3}$$  From (2)

    $$\therefore \dfrac{x-6}{3}=y=\dfrac{-z-1}{2}$$

    So, the given equation can be re-written as

    $$\dfrac{x-6}{3}=\dfrac{y}{1}=\dfrac{z+1}{-2}$$

    Hence the direction ratios of the given line are proportional to $$3,1,-2$$
  • Question 5
    1 / -0
    The direction cosines of a vector A are $$\cos { \alpha  } =\frac { 4 }{ 5\sqrt { 2 }  } ,$$ $$cos \beta =\frac { 1 }{ \sqrt { 2 }  } ,$$ and $$cos \gamma = \frac{ 3 }{ 5\sqrt { 2 }  } ,$$ then vector A is
    Solution
    $$\vec{A} = a\hat{i} + b\hat{j} + c\hat{k}$$

    $$\cos \alpha = \dfrac{a}{\sqrt{a^2+ b^2+c^2}}$$     $$\cos \beta = \dfrac{b}{\sqrt{a^2 + b^2 + c^2}}$$     $$\cos \gamma = \dfrac{c}{\sqrt{a^2 + b^2 + c^2}}$$

    $$\sqrt{4^2 + 5^2 + 3^2} = \sqrt{16 +25+ 9} = \sqrt{50} = 5\sqrt{2}$$

    $$\vec{A} = 4\hat{i} + 5\hat{j} + 3\hat{k}$$
  • Question 6
    1 / -0
    If $$\overline { O A } = 3 \overline { i } + \overline { j } - \overline { k }$$, $$| \overline { A B } | = 2 \sqrt { 6 }$$ and AB has the direction ratios 1, -1 , 2 then $$| O B | =$$ 
    Solution
    $$\vec{OA}=3\hat{i}+\hat{j}-\hat{k}$$
    $$|\vec{AB}|=2\sqrt{6}$$ has dr's $$(1, -1, 2)$$
    Unit vector with above dr's are
    $$\vec{AB}=\left(\dfrac{1}{\sqrt{6}}\hat{i}-\dfrac{1}{\sqrt{6}}\hat{j}+\dfrac{2}{\sqrt{6}}\hat{k}\right)(2\sqrt{6})$$
    $$\vec{AB}=2\hat{i}-2\hat{j}+4\hat{k}$$

    $$\vec{AB}=\vec{OB}-\vec{OA}$$
    $$\vec{OB}=(2\hat{i}-2\hat{j}+4\hat{k})+(3\hat{i}+\hat{j}-\hat{k})$$
    $$\vec{OB}=(5\hat{i}-\hat{j}+3\hat{k})$$
    $$|OB|=\sqrt{25+1+9}=\sqrt{35}$$.
  • Question 7
    1 / -0
    The vector $$a = \alpha 1 + 2 j + \beta k$$ lies in the plane of the vectors $$b = i + jt$$ and $$c = j + k$$ and bisects the angle between $$b$$ and $$c$$. Then which one of the following gives possible values $$\alpha$$ and $$\beta$$.
  • Question 8
    1 / -0
    Let $$l_{1},\ m_{1},\ n_{1};\ l_{2},\ m_{2},\ n_{2};\ l_{3},\ m_{3},\ n_{3}$$ be the direction cosines of three mutually perpendicular line then $$\begin{vmatrix} { l }_{ 1 } & m_{ 1 } & n_{ 1 } \\ { l }_{ 2 } & m_{ 2 } & n_{ 2 } \\ { l }_{ 3 } & m_{ 3 } & n_{ 3 } \end{vmatrix}$$
    Solution

  • Question 9
    1 / -0
    The point where $$\vec{ x }$$ which is perpendicular to $$(2,-3,1)$$ and $$(1,-2,3)$$ and which satisfies the condition $$\vec { x } \cdot ( \hat { i } + 2 \hat { j } - 7 \hat{ k } ) = 10$$
    Solution
    $$\bar{x} = (a , b, c)$$
    $$\bar{x} \bot (2, -3, 1) \, \& \, x \bot (1, -2 , 3)$$
    $$\Rightarrow x .(2, -3, 1) = 0$$ & $$x. (1, -2, 3) = 0$$
    $$\Rightarrow 2a - 3b + c = 0$$__(1) & $$ a - 2b + 3c = 0$$__(2)
    $$\bar{x} . (\hat{i} + 2 \hat{j} - 7 \hat{k} ) = 10$$
    $$\Rightarrow a + 2b - 7c = 10$$ __(3)
    $$\left.\begin{matrix}(1)  \Rightarrow c = 3b - 2a\\(2) \Rightarrow a = 2b - 3c \end{matrix}\right\}$$ Put in (3)
    $$a + 2b - 7c = 10$$
    $$2b - 3c + 2b - 7c = 10$$
    $$\Rightarrow 4b - 10 c = 10$$ __(4)
    (1) $$\Rightarrow a = \dfrac{-c + 3b}{2} $$
    $$ a = \dfrac{3b - c}{2} = 2b - 3c$$
    $$\Rightarrow 3b - c = 4b - 6c$$
    $$\Rightarrow b = 5c$$ __(5)
    from (4) & (5)
    $$c = 1 , b = 5, a = 7$$
    $$\Rightarrow \bar{x} = (7, 5 , 1)$$
  • Question 10
    1 / -0
    The equation of the plane through $$\left(0,-5,1\right)$$ which is perpendicular to the planes $$2x+4y+2z+3=0$$,$$2x+5y+3z+4=0$$ is 
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now