Self Studies

Three Dimensional Geometry Test - 51

Result Self Studies

Three Dimensional Geometry Test - 51
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If  $$A(3\hat { i } +2\hat { j } +3\hat { k } ),B(-\hat { i } -\hat { j } +8\hat { k } ),C(-4\hat { i } +4\hat { j } +6\hat { k } )$$  are the vertices of a triangle then the equation of the line passing through the circumcentre and parallel to  $$\vec { A B }$$  is
  • Question 2
    1 / -0
    The cartesian from of equation a line passing through the point position vector $$2\hat{i}-\hat{j}+2\hat{k}$$ and is in the direction of $$-2\hat{i}+\hat{j}+\hat{k}$$, is
    Solution
    Equation of a line passing through a point with position vector $$\vec{a}$$ and parallel to $$\vec{b}$$ is 

    $$\vec{r}=\vec{a}+\lambda\vec{b}$$

    Here $$\vec{a}= 2\hat{i}−\hat{j}+2\hat{k}$$ and $$\vec{b}=−2\hat{i}+\hat{j}+\hat{k}$$ 

    So,$$\vec{r}=2\hat{i}−\hat{j}+2\hat{k}+\lambda\left(−2\hat{i}+\hat{j}+\hat{k}\right)$$

    Equation of the line in vector form is $$2\hat{i}−\hat{j}+2\hat{k}+\lambda\left(−2\hat{i}+\hat{j}+\hat{k}\right)$$

    Since the line passes through a point with position vector $$2\hat{i}−\hat{j}+2\hat{k}$$

    $$\therefore {x}_{1}=2,\,{y}_{1}=-1,\,{z}_{1}=2$$

    Also, line is in the direction of $$−2\hat{i}+\hat{j}+\hat{k}$$

    Direction ratios :$$a=-2,\,b=1,\,c=1$$

    Equation of line in cartesian form is

    $$\dfrac{x-2}{-2}=\dfrac{y+1}{1}=\dfrac{z-2}{1}$$
  • Question 3
    1 / -0
    If $$\cos { \alpha ,\quad \cos { \beta ,\quad \cos { \gamma  }  }  }$$   are the direction cosine of a line, then find the value of $${ cos }^{ 2 }\alpha +\left( \cos { \beta +\sin { \gamma  }  }  \right)$$$$\left( \cos { \beta - \sin { \gamma  } }  \right)$$
  • Question 4
    1 / -0
    $$\dfrac { x - 2 } { 1 } = \dfrac { y - 3 } { 1 } = \dfrac { z - 4 } { - 1 }$$ & $$\dfrac { x - 1 } { k } = \dfrac { y - 4 } { 2 } = \dfrac { z - 5 } { 2 }$$ are coplanar then k=?
    Solution
    If this two lines are co-planar
    $$\begin{vmatrix}  1& 1&-1 \\ k & 2 & 2\\ 2-1&3-4&4-5\end{vmatrix}=0$$

    $$\begin{vmatrix} 1&1&1 \\k&2 &2\\ 1&-1&-1\end{vmatrix}=0$$

    $$1(-2+2)-1(-k-2)-1(-k-2)=0$$

    $$k + 2+ k + 2 = 0$$

    $$k = -2$$

  • Question 5
    1 / -0
    A normal to the plane $$  x=2  $$ is...
    Solution
    The plane $$x=2$$ is perpendicular  to  $$ x axis$$ 
    So the angle is $$\dfrac{\pi}{2},\cos \dfrac{\pi}{2}=0$$ 
    The plane $$x=2$$ is parallel to both $$y axis$$ and $$ z axis $$
    So the angle is $$0,\cos 0=1$$
    So the Drs are $$(0,1,1)$$  
  • Question 6
    1 / -0
    The straight lines $$ \dfrac {x-1}{1} = \dfrac {y-2}{2} = \dfrac {z-3}{3} $$ and $$ \dfrac {x-1}1{} = \dfrac {y-2}{2} = \dfrac {z-3}3{} $$ are :
    Solution
    The given straight line   $$\frac{{x - 1}}{1} = \frac{{y - 2}}{2} = \frac{{z - 3}}{3}\,and,\,\frac{{x - 1}}{1} = \frac{{y - 2}}{2} = \frac{{z - 3}}{3}$$  are intersecting at right angle because by solving it with matrix method we get $$0$$.
    Hence, the option $$D$$ is the correct answer.
  • Question 7
    1 / -0
    Direction ratio of line given by $$\dfrac { x-1 }{ 3 } =\dfrac { 6-2y }{ 10 } =\dfrac { 1-z }{ -7 } $$ are:
    Solution
    $$\cfrac{x-1}{3} = \cfrac{6 - 2y}{10} = \cfrac{1 - z}{-7}$$
    $$\cfrac{x-1}{3} = \cfrac{2y - 6}{-10} = \cfrac{z - 1}{- \left( -7 \right)}$$
    $$\cfrac{x - 1}{3} = \cfrac{y - 3}{\left( \cfrac{-10}{2} \right)} = \cfrac{z - 1}{7}$$
    $$\cfrac{x-1}{3} = \cfrac{y - 3}{-5} = \cfrac{z-1}{7}$$
    Therefore,
    Direction ratios are $$3, -5, 7$$
  • Question 8
    1 / -0
    A line with direction cosines proportional to 2 , 1, 2 meets each of the lines x = y + a = z and x + a = 2y = 2z. The co-ordinates of each of the point of intersection are given by ______________.
    Solution

  • Question 9
    1 / -0
    the points $$(\alpha ,\beta )(\gamma ,\delta ),(\alpha ,\delta )and (\gamma ,\beta )$$   where $$\alpha ,\beta ,\gamma ,\delta $$  are different real numbers, are 
    Solution

  • Question 10
    1 / -0
    The angle between the lines whose direction cosines are given by $$2l-m+2n=0$$, $$lm+mn+nl=0$$ is
    Solution
    $$\Rightarrow$$  $$mn+nl+lm=0$$                ----- ( 1 )
    $$\Rightarrow$$  $$2l-m+2n=0$$
    $$\Rightarrow$$  $$m=2l+2n$$                ----- ( 2 )
    Substituting ( 2 ) in ( 1 ), we get,
    $$\Rightarrow$$  $$(2l+2n)n+nl+l(2l+2n)=0$$
    $$\Rightarrow$$  $$2ln+2n^2+nl+2l^2+2ln=0$$
    $$\Rightarrow$$  $$2n^2+5ln+2l^2=0$$
    $$\Rightarrow$$  $$2n^2+4ln+ln+2l^2=0$$
    $$\Rightarrow$$  $$2n(n+2l)+l(n+2l)=0$$
    $$\Rightarrow$$  $$(2n+1)(n+2l)=0$$
    $$\Rightarrow$$  $$2n+1=0$$ or $$n+2l=0$$
    $$\Rightarrow$$  $$l=-2n$$ or $$2l=-n$$            ---- ( 3 )
    Substituting the values of ( 3 ) in ( 2 ) we get,
    For the $$1^{st}$$ line :
    $$\Rightarrow$$  $$m=2(-2n)+2n$$
    $$\Rightarrow$$  $$m=-4n+2n$$
    $$\Rightarrow$$  $$m=-2n$$
    The direction ratios for the $$1^{st}$$ line is $$(-2n,-2n,n).$$
    For the $$2^{nd}$$ line:
    $$\Rightarrow$$  $$m=-n+2n$$
    $$\Rightarrow$$  $$m=n$$
    The direction ratios for the $$2^{nd}$$ line is $$\left(\dfrac{-n}{2},n,n\right)$$.
    We know that the angle between the lines with direction ratios proportional to $$(a_1,b_1,c_1)$$ and $$(a_2,b_2,c_2)$$ is given by:
    $$\Rightarrow$$  $$\theta=\cos^{-1}\left(\dfrac{a_1a_2+b_1b_2+c_1c_2}{\sqrt{a_1^2+b_1^2+c_1^2}\sqrt{a_2^2+b_2^2+c_2^2}}\right)$$
    Here, $$a_1=-2n,\,a_2=\dfrac{-n}{2},\,b_1=-2n,\,b_2=n,\,c_1=n$$ and $$c_2=n$$

    $$\Rightarrow$$  $$\theta=\cos^{-1}\left(\dfrac{\left(-2n\times \dfrac{-n}{2}\right)+(-2n\times n)+(n\times n)}{\sqrt{(-2n)^2+(-2n)^2+n^2}\sqrt{\left(\dfrac{n}{2}\right)^2+n^2+n^2}}\right)$$

    $$\Rightarrow$$  $$\theta=\cos^{-1}\left(\dfrac{n^2-2n^2+n^2}{\sqrt{4n^2+4n^2+n^2}\sqrt{\dfrac{n^2}{4}+n^2+n^2}}\right)$$

    $$\Rightarrow$$  $$\theta=\cos^{-1}\left(\dfrac{0}{\sqrt{9n^2}\sqrt{\dfrac{9n^2}{4}}}\right)$$

    $$\Rightarrow$$  $$\theta=\cos^{-1}(0)$$
    $$\therefore$$  $$\theta=\dfrac{\pi}{2}$$
    $$\therefore$$  The angle between two lines is $$\dfrac{\pi}{2}$$ or $$90^o.$$



Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now