$$\Rightarrow$$ $$mn+nl+lm=0$$ ----- ( 1 )
$$\Rightarrow$$ $$2l-m+2n=0$$
$$\Rightarrow$$ $$m=2l+2n$$ ----- ( 2 )
Substituting ( 2 ) in ( 1 ), we get,
$$\Rightarrow$$ $$(2l+2n)n+nl+l(2l+2n)=0$$
$$\Rightarrow$$ $$2ln+2n^2+nl+2l^2+2ln=0$$
$$\Rightarrow$$ $$2n^2+5ln+2l^2=0$$
$$\Rightarrow$$ $$2n^2+4ln+ln+2l^2=0$$
$$\Rightarrow$$ $$2n(n+2l)+l(n+2l)=0$$
$$\Rightarrow$$ $$(2n+1)(n+2l)=0$$
$$\Rightarrow$$ $$2n+1=0$$ or $$n+2l=0$$
$$\Rightarrow$$ $$l=-2n$$ or $$2l=-n$$ ---- ( 3 )
Substituting the values of ( 3 ) in ( 2 ) we get,
For the $$1^{st}$$ line :
$$\Rightarrow$$ $$m=2(-2n)+2n$$
$$\Rightarrow$$ $$m=-4n+2n$$
$$\Rightarrow$$ $$m=-2n$$
The direction ratios for the $$1^{st}$$ line is $$(-2n,-2n,n).$$
For the $$2^{nd}$$ line:
$$\Rightarrow$$ $$m=-n+2n$$
$$\Rightarrow$$ $$m=n$$
The direction ratios for the $$2^{nd}$$ line is $$\left(\dfrac{-n}{2},n,n\right)$$.
We know that the angle between the lines with direction ratios proportional to $$(a_1,b_1,c_1)$$ and $$(a_2,b_2,c_2)$$ is given by:
$$\Rightarrow$$ $$\theta=\cos^{-1}\left(\dfrac{a_1a_2+b_1b_2+c_1c_2}{\sqrt{a_1^2+b_1^2+c_1^2}\sqrt{a_2^2+b_2^2+c_2^2}}\right)$$
Here, $$a_1=-2n,\,a_2=\dfrac{-n}{2},\,b_1=-2n,\,b_2=n,\,c_1=n$$ and $$c_2=n$$
$$\Rightarrow$$ $$\theta=\cos^{-1}\left(\dfrac{\left(-2n\times \dfrac{-n}{2}\right)+(-2n\times n)+(n\times n)}{\sqrt{(-2n)^2+(-2n)^2+n^2}\sqrt{\left(\dfrac{n}{2}\right)^2+n^2+n^2}}\right)$$
$$\Rightarrow$$ $$\theta=\cos^{-1}\left(\dfrac{n^2-2n^2+n^2}{\sqrt{4n^2+4n^2+n^2}\sqrt{\dfrac{n^2}{4}+n^2+n^2}}\right)$$
$$\Rightarrow$$ $$\theta=\cos^{-1}\left(\dfrac{0}{\sqrt{9n^2}\sqrt{\dfrac{9n^2}{4}}}\right)$$
$$\Rightarrow$$ $$\theta=\cos^{-1}(0)$$
$$\therefore$$ $$\theta=\dfrac{\pi}{2}$$
$$\therefore$$ The angle between two lines is $$\dfrac{\pi}{2}$$ or $$90^o.$$