Let the length of the cube be $$a$$ units.
Let $$AA', BB', CC' , OP$$ be the diagonals of the cube.
Coordinates of vertices are $$O(0,0,0),A(a,0,0), A'(0,a,a),B(0,b,0),B'(b,0,b),C(0,0,c),C'(c,c,0), P(a,a,a)$$
D.Rs of $$AA'$$ are $$(-a,a,a)$$.
D.Rs of $$BB'$$ are $$ (a,-a,a)$$
D.Rs of $$CC'$$ are $$(a,a,-a)$$
D.Rs of $$OP$$ are $$(a,a,a)$$
D.c's of $$AA'$$ are $$\displaystyle \frac{-a}{\sqrt{a^2+a^2+a^2}},\frac{a}{\sqrt{a^2+a^2+a^2}},\frac{a}{\sqrt{a^2+a^2+a^2}}=-\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}}$$
D.c's of $$BB'$$ are $$\displaystyle \frac{1}{\sqrt{3}} ,-\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}}$$
D.c's of $$CC'$$ are $$\displaystyle \frac{1}{\sqrt{3}} ,\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}$$
D.c's of $$OP$$ are $$\displaystyle \frac{1}{\sqrt{3}} ,\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}}$$
Let the d.c's of given line be $$l,m,n$$ such that $$l^2+m^2+n^2=1$$
Given , the line makes angles $$60^{o}, 45^{o}, 45^{o}$$ and $$\theta$$ with the four diagonals of a cube.
$$\displaystyle \cos {60}^{0}=\frac{-l+m+n}{\sqrt{3}}$$
$$\Rightarrow \displaystyle \frac{1}{2}=\frac{-l+m+n}{\sqrt{3}}$$ .....(1)
$$\displaystyle \cos {45}^{0}=\frac{l-m+n}{\sqrt{3}}$$
$$\Rightarrow \displaystyle \frac{1}{\sqrt{2}}=\frac{l-m+n}{\sqrt{3}}$$ .....(2)
$$\displaystyle \cos {45}^{0}=\frac{l+m-n}{\sqrt{3}}$$
$$\Rightarrow \displaystyle \frac{1}{\sqrt{2}}=\frac{l+m-n}{\sqrt{3}}$$ .....(3)
$$\displaystyle \cos {\theta}=\frac{l+m+n}{\sqrt{3}}$$ ....(4)
Squaring and adding (1),(2),(3),(4), we get
$$\Rightarrow \displaystyle \frac{5}{4}+\cos^{2}\theta=\frac{4}{3}$$ ($$\because l^2+m^2+n^2=1$$)
$$\Rightarrow \cos^{2}\theta=\displaystyle \frac{1}{12}$$
$$\Rightarrow \displaystyle \sin^{2}\theta=\frac{11}{12}$$