Self Studies

Three Dimensional Geometry Test - 55

Result Self Studies

Three Dimensional Geometry Test - 55
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Direction cosines of $$3i$$ be
    Solution
    Given vector
    $$\vec a=3\hat i+0\hat j+0\hat k$$
    Whose direction ratio's are $$3,0,0$$.
    Direction cosines of $$\vec a$$ are
    $$\dfrac{3}{\sqrt{(3)^2+0+0}},\dfrac{0}{\sqrt{(3)^2+0+0}},\dfrac{0}{\sqrt{(3)^2+0+0}}$$
    or $$\dfrac{3}{3},\dfrac{0}{3},\dfrac{0}{3}$$
    or $$1,0,0$$
  • Question 2
    1 / -0
    $$A(1, 0,0), B(0, 2, 0), C(0, 0, 3)$$ form the triangle $$ABC$$. Then the direction ratios of the line joining orthocenter and circumcentre of $$ABC$$ are
    Solution
    Let H(a,b,c) be the orthocenter of $$\Delta ABC$$
    AH is perpendicular to BC $$\Rightarrow (a-1)0+b(2-0)+c(0-3)=0$$
    $$2b=3c\Rightarrow b=\dfrac{3}{2}c$$
    Also BH is perpendicular to CA 
    $$\Rightarrow (a-0)(0-1)+(b-2)0+(c-0)3=0$$
    $$\Rightarrow -a+3c=0$$
    $$\Rightarrow a=3c$$ 
    Now (a,b,c) lies on the plane $$\dfrac{x}{1}+\dfrac{y}{2}+\dfrac{z}{3}=1$$
    $$3c+\dfrac{1}{2}\dfrac{3}{2}c+\dfrac{1}{3}c=1$$
    $$\Rightarrow c=\dfrac{12}{49}$$
    $$\therefore a=\dfrac{36}{49},b=\dfrac{18}{49}$$
    $$\therefore $$ orthocenter =$$\left ( \dfrac{36}{49} ,\dfrac{18}{49},\dfrac{12}{49}\right )$$
    Centroid of $$\Delta ABC$$ is $$\left ( \dfrac{1}{3} ,\dfrac{2}{3},1\right )$$
    Dr s of the line joining orthocentre and crirumcentre 
    $$=$$ Dr s of the line joining orthocenter and centroid .
    $$=\dfrac{36}{49}-\dfrac{1}{3},\dfrac{18}{49}-\dfrac{2}{3},\dfrac{12}{49}-1$$

    $$=59,-44-111$$ 

  • Question 3
    1 / -0
    Assertion ($$A$$): 
    Three points with position vectors $$\vec{a},\vec{b},\ \vec{c}$$ are collinear if $$\vec{a}\times\vec{b}+\vec{b}\times\vec{c}+\vec{c}\times\vec{a}=\vec{0}$$

    Reason ($$R$$):
    Three points $${A}, {B},\ {C}$$ are collinear if $$\vec{AB}={t}\ \vec{BC}$$, where $${t}$$ is a scalar quantity.
    Solution
    Let the position vectors of $$A, B, C$$ be $$\vec a, \vec b, \vec c$$ respectively.
    Given, $$\vec{AB} = t\ \vec{BC}$$
    $$\Rightarrow \vec{AB}\times\vec{BC} = 0$$
    $$\Rightarrow (\vec b - \vec a)\times(\vec c - \vec b) = 0$$
    $$\Rightarrow (\vec a - \vec b)\times(\vec b - \vec c) = 0$$
    $$\Rightarrow \vec a\times \vec b + \vec b\times \vec c + \vec c \times \vec a = 0$$
    Hence, $$\vec a, \vec b, \vec c$$ are collinear.

    Hence, option A.
  • Question 4
    1 / -0
    If a ray makes angles $$\alpha, \beta, \gamma$$ and $$\delta$$ with the four diagonals of a cube and
    $$\mathrm{A}:\cos^{2}\alpha+\cos^{2}\beta+\cos^{2}\gamma+\cos^{2}\delta$$
    $$\mathrm{B}:\sin^{2}\alpha+\sin^{2}\beta+\sin^{2}\gamma+\sin^{2}\delta$$
    $$\mathrm{C}:\cos 2\alpha+\cos 2\beta+\cos 2\gamma+\cos 2\delta$$
    Arrange $$A,B,C$$ in descending order
    Solution

    If a ray makes angles $$\alpha, \beta, \gamma$$ and $$\delta$$ with the four diagonals of a cube.

    Then we know that $$\cos^{2}\alpha+\cos^{2}\beta+\cos^{2}\gamma+\cos^{2}\delta=\displaystyle\dfrac{4}{3}$$ 

     

    $$\mathrm{A}:$$

    $$\cos^{2}\alpha+\cos^{2}\beta+\cos^{2}\gamma+\cos^{2}\delta=\displaystyle\dfrac{4}{3}$$

     

    $$\mathrm{B}:$$

    $$\sin^{2}\alpha+\sin^{2}\beta+\sin^{2}\gamma+\sin^{2}\delta$$

    $$=1-\cos^{2}\alpha+1-\cos^{2}\beta+1-\cos^{2}\gamma+1-\cos^{2}\delta=4-\displaystyle\dfrac{4}{3}=\displaystyle\dfrac{8}{3}$$

     

    $$\mathrm{C}:$$

    $$\cos 2\alpha+\cos 2\beta+\cos 2\gamma+\cos 2\delta$$

    $$=1-2\sin^{2}\alpha+1-2\sin^{2}\beta+1-2\sin^{2}\gamma+1-2\sin^{2}\delta=4-\displaystyle\dfrac{16}{3}=\displaystyle-\dfrac{4}{3}$$

     

    Descending order is $$B,A,C$$

    Hence, option A is correct answer.

  • Question 5
    1 / -0
    Find the angle between the pair of lines $$\overrightarrow { r } =3i+2j-4k+\lambda \left( i+2j+2k \right) $$ and $$\overrightarrow { r } =5i-2k+\mu \left( 3i+2j+6k \right) $$.
    Solution

    Given lines are $$\overrightarrow { r } =3i+2j-4k+\lambda \left( i+2j+2k \right) $$

    and $$\overrightarrow { r } =5i-2k+\mu \left( 3i+2j+6k \right) $$

    We know, angle between $$\overrightarrow { r } =\overrightarrow { { a }_{ 1 } } +\lambda \overrightarrow { { b }_{ 1 } } $$ and $$\overrightarrow { r } =\overrightarrow { { a }_{ 2 } } +\lambda \overrightarrow { { b }_{ 2 } } $$ is given by,

    $$\displaystyle \cos { \theta  } =\dfrac { \overrightarrow { { b }_{ 1 } } .\overrightarrow { { b }_{ 2 } }  }{ \left| \overrightarrow { { b }_{ 1 } }  \right| \left| \overrightarrow { { b }_{ 2 } }  \right|  } $$

     

    $$\Rightarrow \cos { \theta  } =\dfrac { \left( i+2j+2k \right) .\left( 3i+2j+6k \right)  }{ \sqrt { { 1 }^{ 2 }+{ 2 }^{ 2 }+{ 2 }^{ 2 } } \sqrt { { 3 }^{ 2 }+{ 2 }^{ 2 }+{ 6 }^{ 2 } }  } $$ 

     

    $$\displaystyle =\dfrac { 3+4+12 }{ \sqrt { 9 } \sqrt { 49 }  } =\dfrac { 19 }{ 21 } $$

    $$\Rightarrow \theta =\cos ^{ -1 }{ \left( \dfrac { 19 }{ 21 }  \right)  } $$

  • Question 6
    1 / -0
    A: The acute angle between the space diagonals (passing through opposite corners) of a cube.
    B: The angle between the face diagonals of a cube.
    C: The acute angle between a face diagonal and a space diagonal of a cube passing through the same corner of the cube.
    Arrange A, B, C in ascending order
    Solution
    Let us consider a unit cube with one of the vertices as the origin and the coordinate axes along the edges of the cube. We can find the angles between the given lines using dot product of vectors along the lines.  
    The angle between the two diagonals of a cube is $$\theta_{1}=\cos^{-1} {\dfrac{1}{3}}$$
    The angle between two diagonals of a face of cube is $$\theta_{2} = \dfrac{\pi}{2} $$
    The angle between a diagonal of a cube and diagonal of face of a cube is $$\theta_{3}=\cos^{-1} {\sqrt{\dfrac{2}{3}}}$$
    Arranging in ascending order, 
    $$\theta_{3},\theta_{1},\theta_{2}$$
    Hence, option D is the correct answer.
  • Question 7
    1 / -0
    lf $$\alpha,\ \beta,\ \gamma$$ are the angles made by a line with the coordinate axes in the positive direction, then the range of $$\sin\alpha\sin\beta+\sin\beta\sin\gamma+\sin\gamma\sin\alpha$$ is
    Solution
    If $$ \alpha,\; \beta$$ and $$\gamma$$ are angles made by a line with the coordinate axes in the positive direction, then
    $$\cos^2\alpha+\cos^2\beta+\cos^2\gamma=1$$
    $$1-\sin^2\alpha+1-\sin^2\beta+1-\sin^2\gamma=1$$
    $$\sin ^{ 2 }{ \alpha  } +\sin ^{ 2 }{ \beta  } +\sin ^{ 2 }{ \gamma  } =2$$
    Now , using $$ \displaystyle { \left( \sum { \sin { \alpha  }  }  \right)  }^{ 2 }=\sum { \sin ^{ 2 }{ \alpha  }  } +2\sum { \sin { \alpha  } .\sin { \beta  }  } $$
    $$ \displaystyle { \left( \sum { \sin { \alpha  }  }  \right)  }^{ 2 } \ge 0$$
    $$ \Rightarrow \displaystyle \sum { \sin ^{ 2 }{ \alpha  }  } +2\sum { \sin { \alpha  } .\sin { \beta  }  } \ge 0$$
    $$ \displaystyle  \Rightarrow 2 + 2\sum { \sin { \alpha  } .\sin { \beta  }  } \ge 0 $$
    $$ \displaystyle \Rightarrow \sum { \sin { \alpha  } .\sin { \beta  }  } \ge -1$$.....(1)
    Next use the equation $$ \displaystyle \sum { { \left( \sin { \alpha  } -\sin { \beta  }  \right)  }^{ 2 } } =2\sum { \sin ^{ 2 }{ \alpha  }  } -2\sum { \sin { \alpha  } .\sin { \beta  }  } $$
    $$ \displaystyle \sum { { \left( \sin { \alpha  } -\sin { \beta  }  \right)  }^{ 2 } } \ge 0$$
    $$ \displaystyle \Rightarrow 2\sum { \sin ^{ 2 }{ \alpha  }  } -2\sum { \sin { \alpha  } .\sin { \beta  }  } \ge 0$$
    $$ \displaystyle \Rightarrow 4  -2\sum { \sin { \alpha  } .\sin { \beta  }  } \ge 0$$
    $$ \displaystyle \Rightarrow \sum { \sin { \alpha  } .\sin { \beta  }  } \le 2$$.....(2)
    From (1) and (2), we get the range of $$ \displaystyle \sum { \sin { \alpha  } .\sin { \beta  }  } $$ is $$[-1,2]$$
    Hence, option 'B' is correct.
  • Question 8
    1 / -0
    The intercepts made on the axes by the plane which bisects the line joining the points $$(1,2,3)$$ and $$(-3,4,5)$$ at right angles are
    Solution
    Since, the line joining the $$2$$ points is a normal to the plane, the equation of the plane is of the form,
    $$4x-2y-2z = d$$
    Since, the midpoint of the $$2$$ points lies on the plane,
    $$-4-6-8 = d$$
    $$4x-2y-2z = -18$$
    The respective intercepts are,
    $$\left ( \dfrac{-9}{2} , 9 , 9 \right )$$
  • Question 9
    1 / -0
    lf a line makes angles $$60^{o}, 45^{o}, 45^{o}$$ and $$\theta$$ with the four diagonals of a cube, then $$\sin^{2}\theta =$$
    Solution
    Let the length of the cube be $$a$$ units.
    Let $$AA', BB', CC' , OP$$ be the diagonals of the cube.
    Coordinates of vertices are $$O(0,0,0),A(a,0,0), A'(0,a,a),B(0,b,0),B'(b,0,b),C(0,0,c),C'(c,c,0), P(a,a,a)$$

    D.Rs of $$AA'$$ are  $$(-a,a,a)$$.
    D.Rs of $$BB'$$ are $$ (a,-a,a)$$
    D.Rs of $$CC'$$ are  $$(a,a,-a)$$
    D.Rs of $$OP$$ are  $$(a,a,a)$$

    D.c's of $$AA'$$ are $$\displaystyle \frac{-a}{\sqrt{a^2+a^2+a^2}},\frac{a}{\sqrt{a^2+a^2+a^2}},\frac{a}{\sqrt{a^2+a^2+a^2}}=-\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}}$$

    D.c's of $$BB'$$ are $$\displaystyle \frac{1}{\sqrt{3}} ,-\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}}$$
    D.c's of $$CC'$$ are $$\displaystyle \frac{1}{\sqrt{3}} ,\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}$$
    D.c's of $$OP$$ are $$\displaystyle \frac{1}{\sqrt{3}} ,\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}}$$

    Let the d.c's of given line be $$l,m,n$$ such that $$l^2+m^2+n^2=1$$
    Given , the line makes angles $$60^{o}, 45^{o}, 45^{o}$$ and $$\theta$$ with the four diagonals of a cube.
    $$\displaystyle \cos {60}^{0}=\frac{-l+m+n}{\sqrt{3}}$$
    $$\Rightarrow \displaystyle \frac{1}{2}=\frac{-l+m+n}{\sqrt{3}}$$   .....(1)
    $$\displaystyle \cos {45}^{0}=\frac{l-m+n}{\sqrt{3}}$$
    $$\Rightarrow \displaystyle \frac{1}{\sqrt{2}}=\frac{l-m+n}{\sqrt{3}}$$   .....(2)
    $$\displaystyle \cos {45}^{0}=\frac{l+m-n}{\sqrt{3}}$$
    $$\Rightarrow \displaystyle \frac{1}{\sqrt{2}}=\frac{l+m-n}{\sqrt{3}}$$   .....(3)
    $$\displaystyle \cos {\theta}=\frac{l+m+n}{\sqrt{3}}$$    ....(4)

    Squaring and adding (1),(2),(3),(4), we get
    $$\Rightarrow \displaystyle \frac{5}{4}+\cos^{2}\theta=\frac{4}{3}$$   ($$\because l^2+m^2+n^2=1$$)
    $$\Rightarrow \cos^{2}\theta=\displaystyle \frac{1}{12}$$
    $$\Rightarrow \displaystyle \sin^{2}\theta=\frac{11}{12}$$

  • Question 10
    1 / -0
    The direction ratios of the diagonal of a cube which joins the origin to the opposite corner are (when the three concurrent edges of the cube are coordinate axes)
    Solution
    Let the length of the sides of cube is a, then coordinates of corner (P) opposite to origin are (a,a,a)
    $$\therefore$$  Direction ratios of diagonal OP are $$(a-0,a-0,a-0)$$
    $$\therefore (a,a,a) i.e. (1,1,1)$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now