Self Studies

Three Dimensional Geometry Test - 56

Result Self Studies

Three Dimensional Geometry Test - 56
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The vector equation of the plane through the point $$\vec i+2\vec j-\vec k$$ and $$\bot$$ to the line of intersection of the plane $$\overrightarrow { r } .\left( 3\vec i-\vec j+\vec k \right) =1$$ and $$\overrightarrow { r } .\left(\vec  i+4\vec j-2\vec k \right) =2$$ is
    Solution
    The line of inetrsection of the planes $$\overrightarrow { r } .\left( 3\vec i-\vec j+\vec k \right) =1$$ and $$\overrightarrow { r } .\left( \vec i+4\vec j-2\vec k \right) =2$$ is common to both the planes.
    Therefore, it is $$\bot$$ to normals to the two planes i.e. $$\overrightarrow { { n }_{ 1 } } =3\vec i-\vec j+\vec k$$ and $$\overrightarrow { { n }_{ 2 } } =\vec i+4\vec j-2\vec k$$.
    Hence, it is parallel to the vector $$\overrightarrow { { n }_{ 1 } } \times \overrightarrow { { n }_{ 2 } } =-2\vec i+7\vec j+13\vec k$$.
    Thus, we have to find the equation of the plane passing through $$\overrightarrow { a } =\vec i+2\vec j-\vec k$$ and normal to the vector $$\overrightarrow { n } =\overrightarrow { { n }_{ 1 } } \times \overrightarrow { { n }_{ 2 } } $$.
    The equation of the required plane is
    $$\left( \overrightarrow { r } -\overrightarrow { a }  \right) .\overrightarrow { n } \Rightarrow \overrightarrow { r } .\overrightarrow { n } =\overrightarrow { a } .\overrightarrow { n } \\ \Rightarrow \overrightarrow { r } .\left( -2\vec i+7\vec j+13\vec k \right) =\left( \vec i+2\vec j+\vec k \right) .\left( -2\vec i+7\vec j+13\vec k \right) \\ \Rightarrow \overrightarrow { r } .\left( 2\vec i-7\vec j-13\vec k \right) =1$$
  • Question 2
    1 / -0
    The direction cosine of a line equally inclined to the axes are
    Solution
    If $$a$$ line makes angles $$\alpha ,\beta ,\gamma $$ with the axes, we have $$\alpha =\beta =\gamma$$
    $$\displaystyle \therefore \cos { \alpha  } =\cos { \beta  } =\cos { \gamma  } \Rightarrow l=m=n$$
    $$\displaystyle \because { l }^{ 2 }+{ m }^{ 2 }+{ n }^{ 2 }=1$$
    $$\displaystyle \Rightarrow { l }^{ 2 }+{ l }^{ 2 }+{ l }^{ 2 }\quad $$
    $$\Rightarrow { 3l }^{ 2 }=1$$
    $$\displaystyle \Rightarrow { l }^{ 2 }=\frac { 1 }{ 3 } \quad $$
    $$\Rightarrow l=\pm \dfrac { 1 }{ \sqrt { 3 }  } $$
  • Question 3
    1 / -0
    Equation of the line which passes through the point with p.v. (2, 1, 0) and perpendicular to the plane containing the vectors $$\widehat{i}+\widehat{j}\:and\: \widehat{j}+\widehat{k}$$ is
    Solution
    if line perpendicular to plane then eq
    $$\vec{r}=position\ vector\ \vec{a}+t(normal\ vector\ \vec{n})$$
    normal vector of plane
    Given $$\vec{a}=\hat{i}+\hat{j}$$
    $$\vec{b}=\hat{j}+\hat{k}$$
    $$\vec{n}=\vec{a}\times\vec{b}$$
    $$\vec{a}\times\vec{b}=\begin{vmatrix}\hat{i}&\hat{j}&\hat{k}\\1&1&0\\0&1&1\end{vmatrix}$$
    $$\vec{a}\times\vec{b}=\hat{i}(1-0)-\hat{j}(1-0)+\hat{k}(1-0)$$
    $$\vec{a}\times\vec{b}=\hat{i}-\hat{j}+\hat{k}$$
    eq become 
    $$\vec{r}=(2,1,0)+t(1,-1,1)$$
  • Question 4
    1 / -0
    Statement-1  :  If a line makes acute angles $$\alpha, \beta, \gamma, \delta$$ with diagonals of a cube, then $$ \displaystyle \cos^2\alpha+\cos^2\beta+\cos^2\gamma+\cos^2\delta=\frac{4}{3}$$
    Statement 2  :  If a line makes equal angle (acute) with the axes, then its direction cosine are $$ \displaystyle \frac{1}{\sqrt{3}} , \frac{1}{\sqrt{2}}$$ and $$\dfrac{1}{\sqrt{3}}$$
    Solution

    Let l,m,n be the direction ratio of a line making angles ,,, with four diagonals of a cube then as four diagonals have direction ratio,$$( a, a, a)$$;$$(a, a, -a)$$;$$( a, -a, a,)$$ ;$$(-a, a, a) $$(where $$a$$ is the side of the cube)

     

    Now, $$\displaystyle \cos\alpha =\left| \dfrac{al+am+an}{\sqrt{a^2+a^2+a^2}\sqrt{l^2+m^2+n^2}} \right|=\left|\dfrac{l+m+n}{\sqrt3 \sqrt{l^2+m^2+n^2}} \right| $$

     

    $$\displaystyle \cos\beta =\left| \dfrac{al+am-an}{\sqrt{a^2+a^2+a^2}\sqrt{l^2+m^2+n^2}} \right|=\left| \dfrac{l+m-n}{\sqrt{3} \sqrt{l^2+m^2+n^2}} \right| $$

     

    $$\displaystyle \cos\gamma = \left|\dfrac{al-am+an}{\sqrt{a^2+a^2+a^2}\sqrt{l^2+m^2+n^2}} \right|=\left|\dfrac{l-m+n}{\sqrt3 \sqrt{l^2+m^2+n^2}} \right|$$

     

    $$\displaystyle \cos\delta = \left|\dfrac{al+am+an}{\sqrt{a^2+a^2+a^2}\sqrt{l^2+m^2+n^2}} \right|= \left| \dfrac{-l+m+n}{\sqrt{3} \sqrt{l^2+m^2+n^2}} \right|$$

     

    and $$\cos^2\alpha +\cos^2\beta+\cos^2\gamma+\cos^2\delta$$

     

    $$\displaystyle =\dfrac{1}{3}\times \dfrac{(4l^2+4m^2+4n^2)}{l^2+m^2+n^2}=\dfrac{4}{3}$$

     

    So statement 1 is true and statement-2 is not true .

    Hence, option 'C' is correct.

  • Question 5
    1 / -0
    The direction cosines of a line whose equations are $$\dfrac{x-1}{2}=\dfrac{y+3}{4}=\dfrac{z-2}{-3}$$
    Solution
    Step 1:
    The direction ratios of the line joining these points are 
    $$(x_2−x_1),(y_2−y_1),(z_2−z_1)$$
    $$(i.e) 2,4,-3$$
    $$\therefore$$ Direction cosines are 
    $$\dfrac{2}{\sqrt {2^2+4^2+(-3)^2}},\dfrac{4}{\sqrt {2^2+4^2+(-3)^2}},\dfrac{-3}{\sqrt {2^2+4^2+(-3)^2}}$$
    $$\Longrightarrow \dfrac{2}{\sqrt {29}},\dfrac{4}{\sqrt {29}},\dfrac{-3}{\sqrt {29}}$$
  • Question 6
    1 / -0
    If the foots of the perpendicular from the origin to a plane is $$(a,b,c)$$, the equation of the plane is
    Solution
    Let the foot of the perpendicular be $$P(a,b,c)$$.
    Then, direction ratios of $$OP$$ are $$a-0,b-0,c-0$$ i.e. $$a,b,c$$
    So, the equation of the plane passing through $$P(a,b,c)$$, the direction ratios of the normal to which are $$a,b,c$$ is
    $$a\left( x-a \right) +b\left( y-b \right) +c\left( z-c \right) =0\\ \Rightarrow ax+by+cz={ a }^{ 2 }+{ b }^{ 2 }+{ c }^{ 2 }.$$
  • Question 7
    1 / -0

    If equation of the plane through the straight line $$\displaystyle \dfrac{x -1}{2}=\dfrac{y +2}{-3}=\dfrac{z}{5}$$ and perpendicular to the plane $$x - y + z + 2 = 0 \: $$is$$ \:ax- by + cz + 4 = 0,$$ then find the value of  $$ a^2 + b^2 + c$$

    Solution
    Let equation of a plane containing the line be $$\ell(x- 1) + m(y + 2) + nz = 0$$
    then $$2\ell-3m + 5n = 0 \:$$ and $$ \:\ell - m + n = 0$$
    $$\therefore \dfrac{\ell}{2}=\dfrac{m}{3}=\dfrac{n}{1}$$
    $$\therefore$$ the plane is$$ \:2(x- 1) + 3 (y + 2) + z = 0$$
    i.e. $$2x + 3y + z + 4 = 0$$
    $$ \therefore  a = 2, b = - 3, c = 1$$
    $$\therefore a^2 + b^2 + c = 14$$
  • Question 8
    1 / -0
    The line $$\displaystyle \frac{x - 1}{2} = \frac{y}{-1} = \frac{z + 2}{2}$$ cuts the plane $$\displaystyle x + y + z = 1$$ at $$\displaystyle P$$. If the foot of the perpendicular from $$\displaystyle P$$ to a point $$Q\displaystyle \left ( 3, \: -4, \: 1 \right )$$ on the plane $$S$$ then the equation of the plane $$S$$ is
    Solution
    We have plne,
    $$x+y+z=1.......(1)$$
    And line, 
    $$\dfrac{x-1}{2}=\dfrac{y}{-1}=\dfrac{z+2}{2}=\lambda......(2)$$
    Assume line (2) cuts plane (1) at point P,
    $$P=(2\lambda+1,-\lambda,2\lambda-2)$$
    Since line (2) cuts the plane (1) , Therefore Point P lies on plane (1).
    $$2\lambda+1-\lambda+2\lambda-2=1$$
    $$3\lambda=2$$
    $$\lambda=\dfrac{2}{3}$$

    Therefore,
    $$P=(\dfrac{7}{3},\dfrac{-2}{3},\dfrac{-2}{3})$$

    direction ratios of normal of plane are,as we have two points, point P and Q(3,-4,1),
    $$(3-\dfrac{7}{3},-4+\dfrac{2}{3},1-\dfrac{-2}{3})$$ 
    $$(\dfrac{2}{3},\dfrac{-10}{3},\dfrac{5}{3})$$

    Required Equation of plane,
    $$a(x-x_1)+b(y-y_1)+c(z-z_1)=0$$

    $$\dfrac{2}{3}(x-3)+\dfrac{-10}{3}(y+4)+\dfrac{5}{3}(z-1)=0$$
    $$2x-10y+5z-51=0$$
    $$2x-10y+5z=51$$
    Therefore option (C) is correct.
  • Question 9
    1 / -0
    if a line makes angles $$\alpha,\beta,\gamma,\delta$$ with four diagonals a cube then value of $$sin^{2}\alpha+sin^{2}\beta+sin^{2}\gamma+sin^{2}\delta$$ equals 
    Solution

    Diagonals are $$OE=(1,1,1)$$
    $$\vec { GB } =(1,1,0)-(0,0,1)=(1,1,-1)$$
    $$\vec { FC } =(1,-1,1)$$
    $$\vec { AD } =(-1,1,1)$$
    Let the line have direction ratio's as $$l,m,n$$
    Angle between $$OE$$ and $$L$$ 
    $$\cos { \alpha  } =\dfrac { l+m+n }{ \sqrt { { l }^{ 2 }+{ m }^{ 2 }+{ n }^{ 2 } } \times 2\sqrt { 3 }  } $$
    $$\cos { \beta  } =\dfrac { l+m-n }{ \sqrt { { l }^{ 2 }+{ m }^{ 2 }+{ n }^{ 2 } } \times \sqrt { 3 }  } $$
    $$\cos { \gamma  } =\dfrac { l-m+n }{ \sqrt { { l }^{ 2 }+{ m }^{ 2 }+{ n }^{ 2 } } \times \sqrt { 3 }  } $$
    $$\cos { \delta  } =\dfrac { -l+m+n }{ \sqrt { { l }^{ 2 }+{ m }^{ 2 }+{ n }^{ 2 } } \times \sqrt { 3 }  } $$
    $$\sin ^{ 2 }{ \alpha  } +\sin ^{ 2 }{ \beta  } +\sin ^{ 2 }{ \gamma  } +\sin ^{ 2 }{ \delta  } =4-(\cos ^{ 2 }{ \alpha  } +\cos ^{ 2 }{ \beta  } +\cos ^{ 2 }{ \gamma  } +\cos ^{ 2 }{ \delta  } )$$
    $$\sin ^{ 2 }{ \alpha  } +\sin ^{ 2 }{ \beta  } +\sin ^{ 2 }{ \gamma  } +\sin ^{ 2 }{ \delta  } =4-(4\{ \dfrac { { l }^{ 2 }+{ m }^{ 2 }+{ n }^{ 2 } }{ { 3(l }^{ 2 }+{ m }^{ 2 }+{ n }^{ 2 }) } \} )$$
    $$=\dfrac { 8 }{ 3 } $$

  • Question 10
    1 / -0
    Determine the equation of the plane on which the co - ordinates of the foot of perpendicular drawn from origin O is the point $$\displaystyle P\left ( \alpha ,\beta ,\gamma  \right ).$$
    Solution
    Given that $$OP$$ is normal to plane
    So the Drs of normal to the plane is $$\alpha,\beta,\gamma$$
    Therefore the equation of plane is $$\alpha x+\beta y+\gamma z=k$$
    The point $$(\alpha,\beta,\gamma)$$ lies on the plane
    So we have $${ \alpha  }^{ 2 }+{ \beta  }^{ 2 }+{ \gamma  }^{ 2 }=k$$
    Therefore the equation of plane is $$\alpha x+\beta y+\gamma z={ \alpha  }^{ 2 }+{ \beta  }^{ 2 }+{ \gamma  }^{ 2 }$$
    Therefore the correct option is $$B$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now