We also have $${ l }^{ 2 }+{ m }^{ 2 }+{ n }^{ 2 }=1$$
So that $$\displaystyle { l }^{ 2 }+{ m }^{ 2 }-{ n }^{ 2 }=0\Rightarrow 2{ n }^{ 2 }=1\Rightarrow n=\pm \frac { 1 }{ \sqrt { 2 } } $$
and $$\displaystyle l+m+n=0\Rightarrow { \left( l+m \right) }^{ 2 }={ n }^{ 2 }=\frac { 1 }{ 2 } ={ l }^{ 2 }+{ m }^{ 2 }$$
$$\Rightarrow 2lm=0$$
Either $$l=0$$ or $$m=0$$, if $$\displaystyle l=0,m+n=0$$
$$\Rightarrow m=-n=\pm \dfrac { 1 }{ \sqrt { 2 } } $$
So direction ratios of one of the lines are
$$\displaystyle 0,\pm \frac { 1 }{ \sqrt { 2 } } ,\mp \frac { 1 }{ \sqrt { 2 } } $$
and if $$\displaystyle m=0,l+n=0\Rightarrow l=-n=\pm \frac { 1 }{ \sqrt { 2 } } $$
So the direction ratios of the other line are $$\displaystyle \pm \frac { 1 }{ \sqrt { 2 } } ,0,\mp \frac { 1 }{ \sqrt { 2 } } $$
Thus the required angle is
$$\displaystyle \cos ^{ -1 }{ \left[ 0\times \left( \pm \frac { 1 }{ \sqrt { 2 } } \right) +\left( \pm \frac { 1 }{ \sqrt { 2 } } \right) \left( 0 \right) +\left( \pm \frac { 1 }{ \sqrt { 2 } } \right) \left( \pm \frac { 1 }{ \sqrt { 2 } } \right) \right] } $$
$$\displaystyle =\cos ^{ -1 }{ \left( \frac { 1 }{ 2 } \right) } =\frac { \pi }{ 3 } $$