Self Studies

Three Dimensional Geometry Test - 57

Result Self Studies

Three Dimensional Geometry Test - 57
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$O$$ is the origin and $$A$$ is the point $$\displaystyle \left ( a,b,c \right ).$$ Find the direction cosines of the join of $$OA$$ and deduce the equation of the plane through $$A$$ at right angles to $$OA$$.
    Solution
    D.R.'s of $$OA$$ are $$\displaystyle a-0, b-0, c-0$$ or a,b,c.
    $$\displaystyle \therefore $$ D.C.'s of $$OA$$ are
    $$\displaystyle

    \frac{a}{\sqrt{\left ( a^{2}+b^{2}+c^{2} \right

    )}},\frac{b}{\sqrt{\left ( \sum a^{2} \right )}},\frac{c}{\sqrt{\sum

    a^{2}}}$$
    Equation of any plane through $$A$$, i.e. $$\displaystyle \left ( a,b,c \right )$$ is
    $$\displaystyle A\left ( x-a \right )+B\left ( y-b \right )+C\left ( z-c \right )=0.$$
    But plane is at right angles to $$OA$$ which therefore is normal and whose D.R.'s are $$a, b, c$$.
    Hence, the plane is
    $$\displaystyle a\left ( x-a \right )+b\left ( y-b \right )+c\left ( z-c \right )=0$$
    $$\displaystyle ax+by+cz=a^{2}+b^{2}+c^{2}$$
  • Question 2
    1 / -0
    The direction cosines of the lines bisecting the internal angle $$\theta$$ between the lines whose direction cosines are $$l_{1},m_{1},n_{1}$$ and $$l_{2},m_{2},n_{2}$$ are
    Solution
    The direction cosines of the lines bisecting the internal angle $$\theta$$ between the lines 
    direction cosines are $$l_{1},m_{1},n_{1}$$ and $$l_{2},m_{2},n_{2}$$ are
    $$\displaystyle < \frac{l_{1}+l_{2}}{2\cos \frac{\theta}{2}},\frac{m_{1}+m_{2}}{2\cos \frac{\theta}{2}},\frac{n_{1}+n_{2}}{2\cos \frac{\theta}{2}}>$$
    Option C is correct answer 

  • Question 3
    1 / -0
    The angle between the line $$2x=3y=-z$$ and $$6x=-y=-4z$$ is
    Solution
    From given line
    $$\displaystyle \frac{x}{3}=\frac{y}{2}=\frac{z}{-6} \:$$ and $$\: \dfrac{x}{2}=\dfrac{y}{-12}=\dfrac{z}{-3}$$

    $$\Rightarrow \displaystyle \cos \theta =\frac{a_{1}a_{2}+b_{1}b_{2}+c_{1}c_{2}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}}\sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}$$

    $$\Rightarrow \displaystyle \cos \theta =\frac{6-24+18}{\sqrt{3^{2}+2^{2}+\left ( -6 \right )^{2}}\sqrt{2^{2}+\left ( -12 \right )^{2}+\left ( -3 \right )^{2}}}=0$$

    $$\Rightarrow \theta =90^{0}$$
  • Question 4
    1 / -0
    The projection of a directed line segment on the co-ordinate axes are $$12, 4, 3$$, the DC's of the line are
    Solution
    Let the line segment be represented in vector form as $$\vec a = a_1\vec i+a_2\vec j+a_3\vec k$$
    Vector along coordinate axes are $$\vec i,\vec j,\vec k$$
    Given that projection of $$\vec a$$ on x axis is 12, that with y axis is 4 and that with z axis is 3.
    $$\Longrightarrow \vec a . \vec i = 12, \therefore \ a_1=12$$
    similarily, $$a_2=4,a_3=3$$
    $$\therefore \vec a=12\vec i +4\vec j+3\vec k$$
     the length of the line segment=$$ |\vec a| =\sqrt{144+16+9}=13$$
    $$\therefore |PQ|=13$$
    Thus the direction cosines of PQ are $$ \dfrac{12}{13},\dfrac{4}{13},\dfrac{3}{13}$$
  • Question 5
    1 / -0
    The projections of a line segment on $$x, y, z$$ axes are $$12, 4, 3$$. The length and the direction cosines of the line segments are
    Solution
    Let the line segment be represented in vector form as $$ \vec a =a_1\vec i+a_2\vec j+a_3\vec k$$
    Vector along coordinate axes are  $$ \vec i,\vec j,\vec k $$
    Vector along Given that projection of $$\vec a $$ on x axis is 12, that with y axis is 4 and that with z axis is 3.
    $$\Longrightarrow \vec a . \vec i =12 \Longrightarrow a_1=12.$$
    Similarily $$a_2=4 ,a_3=3$$
    $$\therefore \vec a =12 \vec i+4 \vec j +3 \vec k$$
    The length of the line segment $$= | \vec a |= \sqrt{144+16+9}=13$$
    and  the direction cosines of the line segments are
    $$<\dfrac{12}{13},\dfrac{4}{13},\dfrac{3}{13}>$$


  • Question 6
    1 / -0
    Equation of the plane through three points $$\displaystyle A,B,C$$ with position vectors $$\displaystyle -6\vec i+3\vec j+2\vec k, 3\vec i-2\vec j+4\vec k, 5\vec i+7\vec j+3\vec k$$ is
    Solution
    We have $$\vec{A}=-6\vec i+3\vec j+2\vec k, \vec{B} =3\vec i-2\vec j+4\vec k, \vec{C} =5\vec i+7\vec j+3\vec k$$
    Thus $$\vec{AB}=9\vec i-5\vec j+2\vec k, \vec{AC}=11\vec i+4\vec j+\vec k$$
    Normal vector perpendicular to plane $$ABC$$ is $$\vec{n} =\vec{AB}\times \vec{AC}$$
    $$\Rightarrow \vec{n} = \begin{vmatrix} \vec i&\vec j&\vec k\\9&-5&2\\11&4&1\end{vmatrix}=-13\vec i+13\vec j+91\vec k=13(-\vec i+\vec j+7\vec k)$$
    Thus equation of plane $$ABC$$ is $$(\vec{r}-\vec{A})\cdot \vec{n}=0$$
    $$\Rightarrow (x+6)(-1)+(y-3)(1)+(z-2)(7)=0$$
    $$\Rightarrow x+6-y+3-7z+14=0$$
    $$\Rightarrow (x-y-7z)+23=0$$
    $$\Rightarrow \vec{r}\cdot (\vec i-\vec j-7\vec k)+23=0$$
    Hence, option 'A' is correct choice.
  • Question 7
    1 / -0
    If the position vectors of the points $$A$$, $$B$$, and $$C$$ be $$i + j $$ , $$i - j$$ and $$ai + bj+ ck$$ respective;y , then the points $$A$$, $$B$$ and $$C$$ are collinear if:
    Solution
    Given points are $$A(i+j)$$ , $$B(i-j)$$ and $$C(ai+bj+ck)$$

    These three points are collinear if drs of lines $$AB$$ and $$CB$$ are proportional

    We have $$AB=2j$$ and $$CB = (a-1)i+(b+1)j+ck$$

    Since their drs are proportional, we get $$\dfrac{a-1}{0}=\dfrac{b+1}{2}=\dfrac{c}{0}$$

    $$\Rightarrow c=0 , a=1$$ and $$b$$ can be a arbitrary scalar
    Therefore option $$D$$ is correct
  • Question 8
    1 / -0
    The angle between the lines whose direction cosines are given by the equations $${l}^{2}+{m}^{2}-{n}^{2}=0,l+m+n=0$$ is
    Solution
    We also have $${ l }^{ 2 }+{ m }^{ 2 }+{ n }^{ 2 }=1$$
    So that $$\displaystyle { l }^{ 2 }+{ m }^{ 2 }-{ n }^{ 2 }=0\Rightarrow 2{ n }^{ 2 }=1\Rightarrow n=\pm \frac { 1 }{ \sqrt { 2 }  } $$
    and $$\displaystyle l+m+n=0\Rightarrow { \left( l+m \right)  }^{ 2 }={ n }^{ 2 }=\frac { 1 }{ 2 } ={ l }^{ 2 }+{ m }^{ 2 }$$
    $$\Rightarrow 2lm=0$$ 
    Either $$l=0$$ or $$m=0$$, if $$\displaystyle l=0,m+n=0$$
    $$\Rightarrow m=-n=\pm \dfrac { 1 }{ \sqrt { 2 }  } $$
    So direction ratios of one of the lines are
    $$\displaystyle 0,\pm \frac { 1 }{ \sqrt { 2 }  } ,\mp \frac { 1 }{ \sqrt { 2 }  } $$
    and if $$\displaystyle m=0,l+n=0\Rightarrow l=-n=\pm \frac { 1 }{ \sqrt { 2 }  } $$
    So the direction ratios of the other line are $$\displaystyle \pm \frac { 1 }{ \sqrt { 2 }  } ,0,\mp \frac { 1 }{ \sqrt { 2 }  } $$
    Thus the required angle is 
    $$\displaystyle \cos ^{ -1 }{ \left[ 0\times \left( \pm \frac { 1 }{ \sqrt { 2 }  }  \right) +\left( \pm \frac { 1 }{ \sqrt { 2 }  }  \right) \left( 0 \right) +\left( \pm \frac { 1 }{ \sqrt { 2 }  }  \right) \left( \pm \frac { 1 }{ \sqrt { 2 }  }  \right)  \right]  } $$
    $$\displaystyle =\cos ^{ -1 }{ \left( \frac { 1 }{ 2 }  \right)  } =\frac { \pi  }{ 3 } $$
  • Question 9
    1 / -0
    Find the unit vectors perpendicular to the following pair of vectors:
    $$2i+j+k$$, $$i-2j+k$$
    Solution
    $$\vec { a }  = 2\hat { i } + \hat { j } + \hat { k }$$ 

    $$ \vec { b } =\hat { i } -\hat { 2j } +\hat { k }$$

    Vector  perpendicular  to Given vectors $$\vec { a } ,\vec { b }$$

    $$\Rightarrow\vec { a } \times \vec { b }  = \left| \begin{matrix} \hat i & \hat j & \hat k \\ 2 & 1 & 1 \\ 1 & -2 & 1 \end{matrix} \right|$$

    $$\Rightarrow\vec { a } \times \vec { b }  = \hat i(1-(-2))-\hat j(2-1)+\hat k(-4-1)$$

    $$\Rightarrow \vec { a } \times \vec { b }  = 3\hat { i } -\hat { j } -\hat { 5k }$$

    Unit vector required is $$ \dfrac { \hat { 3i } -\hat { j } -5\hat { k }  }{ \left| 3\hat { i } -\hat { j } -5\hat { k }  \right|  } $$$$=\dfrac { 1 }{ \sqrt { 35 }  } (3\hat { i } -\hat { j } -\hat { 5k } )$$
  • Question 10
    1 / -0
    If direction cosines of two lines are proportional to $$(2,3,-6)$$ and $$(3,-4,5)$$, then the acute angle between them is
    Solution
    We know that
    $$\cos { \theta  } =\cfrac { \left| { a }_{ 1 }{ a }_{ 2 }+{ b }_{ 1 }{ b }_{ 2 }+{ c }_{ 1 }{ c }_{ 2 } \right|  }{ \sqrt { { a }_{ 1 }^{ 2 }+{ b }_{ 1 }^{ 2 }+{ c }_{ 1 }^{ 2 } } \sqrt { { a }_{ 2 }^{ 2 }+{ b }_{ 2 }^{ 2 }+{ c }_{ 2 }^{ 2 } }  } $$
    $$\therefore \cos { \theta  } =\cfrac { \left| (2)(3)+(3)(-4)+(-6)(-5) \right|  }{ \sqrt { { 2 }^{ 2 }+{ 3 }^{ 2 }+{ \left( -6 \right)  }^{ 2 } } \sqrt { { 3 }^{ 2 }+{ \left( -4 \right)  }^{ 2 }+{ 5 }^{ 2 } }  } $$
    $$=\cfrac { \left| 6-12-30 \right|  }{ \sqrt { 4+9+36 } \sqrt { 9+16+25 }  } $$
    $$\Rightarrow \cos { \theta  } =\cfrac { 36 }{ 7.5\sqrt { 2 }  } =\cfrac { 18\sqrt { 2 }  }{ 35 } $$
    $$\Rightarrow \theta =\cos ^{ -1 }{ \left( \cfrac { 18\sqrt { 2 }  }{ 35 }  \right)  } $$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now