Self Studies

Three Dimensional Geometry Test - 59

Result Self Studies

Three Dimensional Geometry Test - 59
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$L_{1}$$ and $$L_{2}$$ are two lines whose vector equations are
    $$L_{1} = \vec {r} = \lambda [(\cos \theta + \sqrt {3})\hat {i} + (\sqrt {2}\sin \theta)\hat {j} + (\cos \theta - \sqrt {3})\hat {k}]$$
    $$L_{2} = \vec {r} = \mu (a\hat {i} + b\hat {j} + c\hat {k})$$, where $$\lambda$$ and $$\mu$$ are scalars and $$\alpha$$ is the acute angle between $$L_{1}$$ and $$L_{2}$$. If the angle $$'\alpha'$$ is independent of $$\theta$$ then the value of $$'\alpha'$$ is
    Solution

  • Question 2
    1 / -0
    The equation of the line parallel to $$\cfrac { x-3 }{ 1 } =\cfrac { y+3 }{ 5 } =\cfrac { 2z-5 }{ 3 } $$ and passing through the point $$(1,3,5)$$ in vector form, is:
    Solution
    We have to find the equation of the line parallel to $$\dfrac{x-3}{1}=\dfrac{y+3}{5}=\dfrac{2z-5}{3}$$ and passing through the point $$(1,3,5)$$ vector form.

    We know that the equation of the line passing through the point with position vector $$\vec{a}$$ and parallel to the vector $$\vec{b}$$ is $$\vec{r}=\vec{a}+t\vec{b}$$

    Consider $$\dfrac{x-3}{1}=\dfrac{y+3}{5}=\dfrac{2z-5}{3}$$

    Rewriting we get $$\dfrac{x-3}{1}=\dfrac{y+3}{5}=\dfrac{z-\dfrac{5}{2}}{\dfrac{3}{2}}$$

    Thus vector representation is $$\vec{b}=\vec{i}+5\vec{j}+\dfrac{3}{2}\vec{k}$$

    Since line passes through $$(1,3,5)$$, $$\vec{a}=\vec{i}+3\vec{j}+5\vec{k}$$

    Hence the required equation of the line is $$\vec{r}=(\vec{i}+3\vec{j}+5\vec{k})+t\left(\vec{i}+5\vec{j}+\dfrac{3}{2}\vec{k}\right)$$
  • Question 3
    1 / -0
    If points $$P\left( 4,5,x \right) ,Q\left( 3,y,4 \right) $$ and $$ R\left( 5,8,0 \right) $$ are colinear, then the value of $$x+y$$ is
    Solution
    $$\vec{PR}=(5-4)\hat{i}+(8-5)\hat{j}+(0-x)\hat{k}$$

    $$\implies \vec{PR}=\hat{i}+3\hat{j}-x\hat{k}$$

    Again, $$\vec{QR}=(5-3)\hat{i}+(8-y)\hat{j}+(0-4)\hat{k}$$

    $$\implies \vec{QR}=2\hat{i}+(8-y)\hat{j}-4\hat{k}$$

    Since, P,Q and R are co-linear points, hence 

    $$\dfrac{1}{2}=\dfrac{3}{8-y}=\dfrac{-x}{-4}$$

    On Solving, we get:-

    $$x=2,y=2$$

    $$\implies x+y=4$$

    Hence, answer is option-(D).
  • Question 4
    1 / -0
    If $$\alpha,\beta,\gamma\in[0,2\pi]$$, then the sum of all possible values of $$\alpha, \beta,\gamma$$ if $$\sin \alpha=-\dfrac{1}{\sqrt{2}}$$, $$\cos \beta=-\dfrac{1}{2}$$, $$\tan \gamma=-\sqrt{3}$$, is
    Solution
    $$\sin\alpha = \dfrac{-1}{\sqrt2}$$

    (-ve) value lies on III, IV quadrant for sin

    $$\therefore \alpha = \pi + \dfrac{\pi}{4}, 2\pi - \dfrac{\pi}{4}$$

            $$= \dfrac{5\pi}{4}, \dfrac{7\pi}{4}$$

    $$\cos\beta = \dfrac{-1}{2}$$

    (-ve) value lies on II, III quadrant for cosine

    $$ \beta = \pi - \dfrac{\pi}{3}, \pi + \dfrac{\pi}{3}$$

            $$= \dfrac{2\pi}{3}, \dfrac{4\pi}{3}$$

    $$\tan\gamma = -\sqrt3$$

    (-ve) value lies on II, IV quadrant for tan : $$\gamma = -\sqrt3$$

    $$ \gamma = \pi - \dfrac{\pi}{3}, 2\pi - \dfrac{\pi}{3}$$

    The sum of all values $$(\alpha + \beta + \gamma)= \dfrac{2\pi}{3}, \dfrac{5\pi}{3}$$

    $$= \dfrac{5\pi}{4} + \dfrac{7\pi}{4} + \dfrac{2\pi}{3} + \dfrac{4\pi}{3} + \dfrac{2\pi}{3} + \dfrac{7\pi}{3}$$

    $$= 3\pi + 2\pi + \dfrac{7\pi}{3}$$

    $$= 5\pi + \dfrac{7\pi}{3}$$

    $$= \dfrac{22\pi}{3}$$
  • Question 5
    1 / -0
    In $$\Delta ABC, |\bar{CB}| = a, |\bar{CA}| = b, |\bar{AB}| = c$$. $$CD$$ is median through the vertex $$C$$. Then $$\bar{CA}.\bar{CD}$$ equals.
    Solution
    $$\overrightarrow{CD}=\overrightarrow{CA}+\overrightarrow{AD}$$
    $$\overrightarrow{AD}=\dfrac{1}{2}\overrightarrow{AB}$$
    $$\overrightarrow{CD}=\overrightarrow{CA}+\dfrac{1}{2}\overrightarrow{AB}$$
    $$\overrightarrow{CD}.\overrightarrow{CA}=\left(\overrightarrow{CA}+\dfrac{1}{2}\overrightarrow{AB}\right)\overrightarrow{CA}$$
    $$|\overrightarrow{CA}|^2+\dfrac{1}{2}\overrightarrow{AB}.\overrightarrow{CA}$$
    $$b^2+\dfrac{1}{2}\overrightarrow{AB}.\overrightarrow{CA}$$  $$(|\overrightarrow{CA}|=b)$$
    $$=\overrightarrow{b}+\dfrac{1}{2}|\overrightarrow{AB}||\overrightarrow{CA}|\cos (\pi-A)$$
    $$b^2-\dfrac{1}{2}bc\left(\dfrac{b^2+c^2-a^2}{2ac}\right)$$
    $$b^2-\dfrac{b^2}{4}-\dfrac{c^2}{4}+\dfrac{a^2}{4}$$
    $$\dfrac{3b^2}{4}-\dfrac{c^2}{4}+\dfrac{a^2}{4}$$
    $$\dfrac{1}{4}(a^2+3b^2-c^2)$$

  • Question 6
    1 / -0
    The equation of plane passing through a point $$A(2, - 1, 3)$$ and parallel to the vectors $$a= (3, 0, - 1)$$ and $$b=(- 3, 2, 2)$$ is:
    Solution
    Let the DR of the normal of required plane be $$<a, b, c>$$
    Since plane is parallel to $$(3, 0, -1)$$
    $$\therefore$$ normal must be perpendicular
    $$\therefore 3a + 0b - c = 0$$ ... $$(1)$$
    Also, it is parallel to $$(-3, 2, 2)$$
    $$\therefore -3a + 2b + 2c = 0$$ ... $$(2)$$
    From $$(1)$$ and $$(2)$$
    $$\dfrac{a}{2} = \dfrac{-b}{6 - 3} = \dfrac{c}{6}$$
    $$a = 2, b = -3, c = 6$$
    It passes through $$(2, -1, 3)$$
    $$2(x - 2) - 3(y + 1) + 6(z - 3) = 0$$
    $$\Rightarrow 2x - 4 - 3y - 3 + 6z - 18 = 0$$
    $$\Rightarrow 2x - 3y + 6z - 25 = 0$$
  • Question 7
    1 / -0
    If a = 4i + 3j and b be two vectors perpendicular to each other on the xy- plane. Then, a vector in the same plane having projections 1 and 2 along a and b respectively, is 
    Solution
    Let $$\vec c$$ be the required vector 
    Given that $$\vec a =4\hat i+3\hat j$$
    Since, you have not given $$\vec b $$, it is assumed to be $$=-3\hat i+4\hat j$$
    Projection of $$\vec c \theta n \vec a=\dfrac {\vec c.\vec a}{|\vec a|}=1$$
    $$\boxed {\vec c.\vec a=5}$$
    Probability of $$\vec c$$ on $$\vec b=\dfrac {\vec c.\vec b}{(\vec b)}=2, \vec c.\vec b=10$$
    Let $$\vec c=n\hat i+y\hat j$$
    $$\vec c.\vec b=100, -3x+y=10$$
    $$x=\dfrac {-2}{5}, y=\dfrac {11}{5}$$
    $$\boxed {\vec =\dfrac {-2}{5}\hat i+\dfrac {11}{5}\hat j}$$
  • Question 8
    1 / -0
    The equation of the plane passing through (1, -2, 4), (3, -4, 5) and perpendicular to yz-plane is.
    Solution

  • Question 9
    1 / -0
    If a line makes angle $$90^{o},135^{o},45^{o}$$ with the $$X-$$,$$Y-$$ and $$Z-$$axes respectively, then its direction cosines are
    Solution

  • Question 10
    1 / -0
    In the isosceles $$\triangle$$ABC, $$|AB| = |BC|=8$$ and point E divides AB internally in the ratio 1 : 3 then the cosine of angel between CE and CA is (where, |CA| = 12)  ?
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now