Self Studies

Three Dimensional Geometry Test - 60

Result Self Studies

Three Dimensional Geometry Test - 60
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The direction ratios of a line perpendicular to both the lines whose direction ratios are $$3,-2,4$$ and $$1,3,-2$$
    Solution

  • Question 2
    1 / -0
    The direction cosines of the line $$x=44z+3; y=2-2\sqrt{19}z$$ is...
    Solution

  • Question 3
    1 / -0
    The distance of the point $$3\hat {i}+5\hat {k}$$ from the line parallel to $$6\hat {i}+\hat {j}  2\hat {k}$$ and passing through the point $$8\hat {i}+3\hat {j}+\hat {k}$$ is 
    Solution

  • Question 4
    1 / -0
    Three points whose position vectors are $$x\bar{i}+y\bar{j}+z\bar{k}$$, $$\bar{i}+2\bar{j}$$ and $$-\bar{i}-\bar{j}$$ are collinear, then relation between $$x, y, z$$ is?
    Solution

  • Question 5
    1 / -0
    A line makes equal angles with the coordinate axis. The direction cosines of this line are
    Solution
    Let the direction cosines of the line make an angle α with each of the coordinate axes.

    $$∴l=cosα,m=cosα,n=cosα$$

    $${ l }^{ 2 }+{ m }^{ 2 }+{ n }^{ 2 }=1$$

    $${ cos }^{ 2 }α+{ cos }^{ 2 }α+{ cos }^{ 2 }α=1$$

    $$3{ cos }^{ 2 }α=1$$

    $${ cos }^{ 2 }α=\frac { 1 }{ 3 } $$

    $$cosα=±\frac { 1 }{ \sqrt { 3 }  } $$

    Thus,the direction cosines of the line,which is equally inclined to the coordinate axes,are

    $$±\frac { 1 }{ \sqrt { 3 }  } ,±\frac { 1 }{ \sqrt { 3 }  } ,and±\frac { 1 }{ \sqrt { 3 }  } .$$
  • Question 6
    1 / -0
    A line passes through the point $$(6, -7, -1)$$ and $$(2, -3, 1)$$. Then the sum of the direction cosines of the line, if the line makes acute angle with positive direction of x-axis, is?
  • Question 7
    1 / -0
    The direction Ratio's of normal of the plane through $$(1, 0, 0), (0, 1, 0)$$  which makes angle $$\pi/4$$ with plane $$x+y =3$$ are
    Solution

  • Question 8
    1 / -0
    If a line makes angles $$\alpha, \beta, \gamma$$ with positive axes, then the range of $$\sin{\alpha}\sin{\beta}+\sin{\beta} \sin{\gamma} +\sin{\gamma} \sin {\alpha}$$ is
    Solution

    If a line makes an angle $$\alpha , \beta , \gamma$$ with the axes, then

    $$\cos^{2}\alpha +\cos^{2}\beta +\cos^{2}\gamma=1$$    $$[\because \cos \alpha,\cos \beta,\cos \gamma $$ are directional cosines$$ ]$$

    $$3-(\sin^{2}\alpha +\sin^{2}\beta +\sin^{2}\gamma)=1$$

    $$\Rightarrow \ \sin^{2}\alpha +\sin^{2}\beta +\sin^{2}\gamma=2$$

     

    Also $$\sin^{2}\alpha +\sin^{2}\beta +\sin^{2}\gamma \ \ge \sin \alpha \sin \beta +\sin \beta \sin \gamma +\sin \gamma \sin \alpha$$

     

    $$\Rightarrow \displaystyle \sum \sin \alpha \sin \beta \le 2$$       $$\dots(1)$$

     

    Also $$(\displaystyle \sum \sin \alpha)^{2}=\displaystyle \sum \sin^{2}\alpha +2\displaystyle \sum \sin \alpha \sin \beta$$          $$[\because (a+b+c)^2=a^2+b^2+c^2+2ab+2bc+2ca]$$

     

    $$(\displaystyle \sum \sin \alpha)^{2} > 0$$

     

    $$\displaystyle \sum \sin^{2}\alpha +2\displaystyle \sum \sin \alpha \sin \beta > 0$$ 

     

    $$2+2\displaystyle \sum \sin \alpha \sin \beta > 0$$

     

    $$2\displaystyle \sum \sin \alpha \sin \beta > -2$$

     

    $$\displaystyle \sum \sin \alpha \sin \beta > \dfrac {-2}{2}$$

     

    $$\displaystyle \sum \sin \alpha \sin \beta >-1$$       $$\dots(2)$$

     

    From $$(1)\ and\ (2)$$

     

    $$\displaystyle 2 \geq \sum \sin \alpha \sin \beta >-1$$ 

     

    Hence the range of $$\displaystyle \sum \sin \alpha \sin \beta$$ is $$(-1, 2]$$

     


  • Question 9
    1 / -0
    The direction ratios of the normal to the plane through $$(1,0,0)$$ and $$(0,1,0)$$ which makes an angle of $$\dfrac{\pi }{4}$$ with the plane $$x + y = 3$$ are-
    Solution
    Let the equation of the plane through $$\left(1,0,0\right)$$ and $$\left(0,1,0\right)$$ be
    $$ax+by+cz+d=0$$
    where $$\vec{n}=\left(a,b,c\right)$$ is unit normal vector to the plane.
    $$\Rightarrow \sqrt{{a}^{2}+{b}^{2}+{c}^{2}}=1$$
    $$\Rightarrow a+d=0$$ and $$b+d=0$$Subtracting these two we get $$a-b=0$$    ....$$(1)$$
    Also since this plane makes angle $$\dfrac{\pi}{4}$$ with $$x+y=3$$
    $$\Rightarrow \dfrac{1}{\sqrt{2}}=\dfrac{\left(a,b,c\right).\left(1,1,0\right)}{1.\sqrt{2}}$$
    $$\Rightarrow a+b=1$$       ........$$(2)$$
    Solving $$(1)$$ and $$(2)$$ we get
    $$2a=1$$ or $$a=\dfrac{1}{2}$$
    From $$(1)$$ we have $$a=b=\dfrac{1}{2}$$
    $$\Rightarrow {c}^{2}=1-\dfrac{1}{4}-\dfrac{1}{4}=\dfrac{1}{2}$$
    or $$c=\pm\dfrac{1}{\sqrt{2}}$$
    $$\therefore$$ Direction ratios of normal is $$\left(a,b,c\right)=\left(\dfrac{1}{2},\dfrac{1}{2},\dfrac{1}{\sqrt{2}}\right)$$
    $$=\left(1,1,\sqrt{2}\right)$$ by multiplying by $$2$$
  • Question 10
    1 / -0
    If $${l}_{1},{m}_{1},{n}_{1}$$ and $${l}_{2},{m}_{2},{n}_{2}$$ are the d.c.s of the two lines, then $${({l}_{1}{l}_{2}+{m}_{1}{m}_{2}+{n}_{1}{n}_{2})}^{2}+{({l}_{1}{m}_{2}-{l}_{2}{m}_{1})}^{2}+{({m}_{1}{n}_{2}-{m}_{2}{n}_{1})}^{2}+{({n}_{1}{l}_{2}-{n}_{2}{l}_{1})}^{2}=$$
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now